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Abstract

In the monochrome-color dual-lens system, the gray image
captured by the monochrome camera has better quality than
the color image from the color camera, but does not have
color information. To get high-quality color images, it is de-
sired to colorize the gray image with the color image as ref-
erence. Related works usually use hand-crafted methods to
search for the best-matching pixel in the reference image for
each pixel in the input gray image, and copy the color of the
best-matching pixel as the result. We propose a novel deep
convolution network to solve the colorization problem in an
end-to-end way. Based on our observation that, for each pixel
in the input image, there usually exist multiple pixels in the
reference image that have the correct colors, our method per-
forms weighted average of colors of the candidate pixels in
the reference image to utilize more candidate pixels with cor-
rect colors. The weight values between pixels in the input
image and the reference image are obtained by learning a
weight volume using deep feature representations, where an
attention operation is proposed to focus on more useful can-
didate pixels and a 3-D regulation is performed to learn with
context information. In addition, to correct wrongly colorized
pixels in occlusion regions, we propose a color residue joint
learning module to correct the colorization result with the in-
put gray image as guidance. We evaluate our method on the
Scene Flow, Cityscapes, Middlebury, and Sintel datasets. Ex-
perimental results show that our method largely outperforms
the state-of-the-art methods.

Introduction
The dual-lens system with one monochrome camera and
one color camera has been widely used in popular smart
phones, e.g. Huawei P9 and P10. In the dual-lens system,
the monochrome camera has better light efficiency than the
color camera (Jeon et al. 2016), so the image captured by
the monochrome camera has higher quality (i.e. signal-to-
noise ratio) than the image from the color camera, but does
not have color information. To shoot high quality color im-
ages using dual-lens systems, it is desirable to colorize the
gray images from the monochrome camera with the color
images from the color camera as reference, so that the col-
orized images have high quality in the monochrome channel
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(a) The input pair of gray and color images. (b) The output color image.

(c) The input and output color images in the red box region.

Figure 1: An example of colorization in the dual-lens sys-
tem. The input images are captured by the dual-lens system
of Huawei P9 phone. The output colorization result has high
quality in the monochrome channel and correct colors.

and correct colors as well. An example is shown in Fig. 1.
In the literature, reference-based colorization methods,

e.g. (Ironi, Cohen-Or, and Lischinski 2005), (Gupta et
al. 2012), (Jeon et al. 2016), are related to our problem.
Most methods, e.g. (Ironi, Cohen-Or, and Lischinski 2005),
(Gupta et al. 2012), usually use hand-crafted features, such
as luminance, variance, etc., to search for the best-matching
pixel in the reference image for each pixel in the input im-
age. Jeon et al. (Jeon et al. 2016) use a stereo matching
method, which is based on brightness constancy and edge
similarity constraints, to search for the best-matching pixel.
For occlusion pixels, color propagation, e.g. (Levin, Lischin-
ski, and Weiss 2004), is usually performed to estimate or
correct the colors of these pixels based on their neighboring
pixels. Recently, deep learning based methods have proven
to be effective for many vision problems compared with
traditional ‘hand-crafted’ methods, e.g. single image super-
resolution (Dong et al. 2014), and stereo matching (Zbontar
and LeCun 2016). However, for reference-based coloriza-
tion, to the best of our knowledge, deep learning based meth-
ods have not been explored yet. In addition, to estimate the
color of each pixel, previous methods usually copy the color
of only one pixel in the reference image as the result. We
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Figure 2: The overall structure of our model. (Best viewed in color)

Figure 3: Examples to show there usually exist several simi-
lar pixels (marked in green) in the reference image that could
provide correct colors for a given pixel (marked in red) in the
input gray image.

notice that, as shown in Fig. 3, for each pixel in the input
image, there usually exist multiple pixels in the reference
image that have the correct colors, especially in textureless
and repeated texture regions. Utilizing more pixels instead
of one in the reference image can help reduce noises and
diminish errors in occlusion regions.

To deal with these issues, in this paper, we propose a con-
volutional neural network that solves the colorization prob-
lem in an end-to-end way. Our method performs weighted
average of colors of candidate pixels in the reference image
to obtain the color of each pixel in the input image.

The framework of our method is shown in Fig. 2. 1) To
compute the weight volume that contains the weight values
between all pixels in the input image and their candidate pix-
els in the reference image, first, we extract deep features of
the input gray image and the gray map of reference image

by ResNet (He et al. 2015), and build a concatenated fea-
ture volume. Then, to get higher weight values between each
pixel and its more useful candidate pixels for colorization,
we propose an attention operation to estimate the attention
weights on different candidate pixels and thus get the atten-
tion weighted feature volume. Next, to estimate the weight
values with context information, we use the 3-D regulation
to compute the weight volume. 2) After getting the weight
volume, we perform weighted average using the estimated
weight and the reference color map to get the rough col-
orization result. 3) The result may fail to have correct colors
in occlusion regions, because it is possible that none of the
candidate pixels in the reference image have correct colors
due to occlusion. So, we propose a color residue joint learn-
ing module to correct the colorization result with the input
gray image as guidance.

Experimental results show that the proposed method
largely outperforms the state-of-the-art algorithms in four
datasets, including Scene Flow (Mayer et al. 2016),
Cityscapes (Cordts et al. 2016), Middlebury (Scharstein and
Pal 2007), and Sintel (Butler et al. 2012).

Our contributions include: 1) For estimating the color of
each pixel, we perform weighted average of colors of all can-
didate pixels in the reference image so as to utilize more pix-
els with correct colors. 2) In the proposed convolutional net-
work, attention mechanism, 3-D regulation and color residue
joint learning are used for improving the accuracy of weight
estimation and correcting colors in occlusion regions. 3) We
achieve the highest accuracy in all the four datasets com-
pared with the state-of-the-art algorithms.

Related Work
In the literature, there exist three kinds of colorization algo-
rithms, including automatic colorization, scribble-based col-
orization, and reference-based colorization.

Automatic colorization algorithms, e.g. (Zhang, Isola, and
Efros 2016) and (Iizuka, Simo-Serra, and Ishikawa 2016),
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directly colorize gray images without any reference. Using
them in our problem is not proper because the reference
color image, which provides much useful color information,
will not be utilized.

Scribble-based colorization algorithms, e.g. (Zhang et al.
2017) and (Levin, Lischinski, and Weiss 2004), need users to
input some scribbles or strokes as guidance for colorization.
Because user input is not available in the camera system,
these algorithms are not suitable for our problem.

Reference-based colorization algorithms, e.g. (Welsh,
Ashikhmin, and Mueller 2002; Ironi, Cohen-Or, and
Lischinski 2005; Gupta et al. 2012; Jeon et al. 2016; Fu-
rusawa et al. 2017; He et al. 2017; 2018), are related to
our problem. Welsh et al. (Welsh, Ashikhmin, and Mueller
2002) assume that pixels with the same grayscale intensity
will have the same color, and use the luminance value as
the feature to search for matching pixels. Ironi et al. (Ironi,
Cohen-Or, and Lischinski 2005) use discrete cosine trans-
form coefficients as the feature to search sparse matching
pixels, copy the color of matching pixels for pixels in high
confidence regions and then colorize pixels in low confi-
dence regions by color propagation (Levin, Lischinski, and
Weiss 2004). Gupta et al. (Gupta et al. 2012) extract fea-
tures of superpixels by averaging feature values of all pixels
among each superpixel, search for matching pixels by fea-
ture matching and use space voting for spatial consistency.
Jeon et al. (Jeon et al. 2016) search for best-matching pixels
by a stereo matching method, which is based on brightness
constancy and edge similarity constraints, and correct col-
ors in occlusion regions by applying spatial consistency of
neighboring pixels over the whole image. Furusawa et al.
(Furusawa et al. 2017) propose a reference-based coloriza-
tion algorithm for colorizing manga images. The assumption
for manga images are not always correct for general images.
Thus, their results are not always good enough for solving
our problem. He et al. (He et al. 2018) propose a deep learn-
ing based algorithm. But, they assume the pair of images
are visually very different but semantically similar. Due to
different assumptions from our problem, they do not con-
sider locality and spatial smoothness and the proposed loss
minimizes the semantic differences of unnatural coloriza-
tion. The result looks natural but is not always faithful to
the ground truth colors.

The monochrome-color dual-lens system is very similar
with the stereo system. Another possible solution is to first
use a pure stereo matching method, e.g. (Alex et al. 2017),
to estimate the disparity between the images, and then copy
colors of the corresponding pixels in the reference image to
current pixels in the gray image. But, even if the estimated
disparity is exactly correct, this solution can hardly gener-
ate correct results in occlusion regions, because, for those
occluded pixels, their corresponding pixels in the reference
image are occluded and thus cannot provide correct colors
for reference.

Besides colorization, there exist some other enhancement
problems in the stereo system, like style transfer(Chen et al.
2018). But, these methods cannot be directly used for our
problem.

Method
The framework of our model is shown in Fig. 2. First, we
generate the weight volume, which contains the weight val-
ues between each pixel in the input image and its candidate
pixels in the reference image. Second, we use it to perform
the weighted average operation and obtain the rough col-
orization result. Third, we perform the color residue joint
learning to correct the wrongly colorized pixels in occlusion
regions.

The goal of the proposed weighted average operation is to
utilize more useful pixels in the reference image for coloriz-
ing each pixel. The challenges are that 1) in the weighted
average operation, if the weight values of the candidate pix-
els with incorrect colors are big, noises or even errors will be
introduced to the colorization results. We propose an atten-
tion operation to reduce the noises/errors. Attention mech-
anism has been successfully used in various problems, e.g.
text classification (Lin et al. 2017), and visual question an-
swering (Lu et al. 2016). It could help the network focus
more on useful information for improving the prediction ac-
curacy. We adopt the attention mechanism to pay more atten-
tions on those useful candidate pixels in the reference image.
This will obtain higher weight values of useful candidate
pixels and reduce noises/errors in the colorization results.
2) In addition, the weight volume is estimated based on the
deep features of the input images. However, the features are
not perfect all the time, so, the 3-D regulation (Alex et al.
2017), which learns with context information, is performed
to generate the weight volume.

Colorization by the weighted average operation may fail
to have correct colors in occlusion regions, because it is pos-
sible that none of the candidate pixels in the reference im-
age have correct colors due to occlusion. To correct wrongly
colorized pixels, we propose the color residue joint learn-
ing module in our network. We share similar insights with
(Levin, Lischinski, and Weiss 2004) that neighboring pix-
els with similar gray intensities should have similar colors,
and the input gray image Y could provide guidance of spa-
tial color consistency. Our method is based on the deep joint
filter (Li et al. 2016). Our difference from (Li et al. 2016)
is that 1) we use ResNet (He et al. 2015) instead of tradi-
tional 2-D convolution due to good performances of ResNet
in related problems, and 2) we learn the residue between the
ground truth color image and the rough colorization result,
because learning the residue map has proven to be more ef-
fective in related works, e.g. single image super resolution
(Kim, Lee, and Lee 2016).

Formulation
Given the color image R ∈ Rh×w×3 from the color camera
as reference, we want to predict the color map C ∈ Rh×w

of the input gray image Y ∈ Rh×w from the monochrome
camera. We use the YCbCr color space in this paper. The Y
channel map of R is denoted as YR. The Cb and Cr channel
maps are predicted respectively. So CR denotes the Cb /Cr
channel map of the reference image, and C denotes the cor-
responding predicted Cb /Cr channel map. All parameters of
the deep network are shared for predicting the Cb and Cr
channel maps.
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First, for each pixel (j, i), we propose to estimate the
rough colorization result C

′

j,i by the weighted average of
colors of its candidate pixels in the reference image, i.e.

C
′

j,i =

d−1∑
k=0

Wj,i,kC
R
j,i+k. (1)

The range of candidate pixels for each pixel (j, i) is defined
as the pixels with the same vertical position, i.e. j, and the
horizontal positions range from i to i + d − 1, where the
hyper-parameter d is the maximum disparity. It is because
the dual-lens of phones are calibrated and the corresponding
pixels should be in the same line but different columns due to
disparity. Pixels in the defined range have high probability to
provide correct colors. Wj,i,k is the weight values between
pixel (j, i) of the input gray image and pixel (j, i + k) of
the reference image, and the weight volume W ∈ Rh×w×d

contains the weight values of all pixels and their candidate
pixels.

Second, we use the input gray image Y as guidance to
correct the rough result C

′
by

C = C′ + Φ(C′,Y), (2)

where Φ denotes the operation of the color residue joint
learning.

Weight volume generation
The weight volume W ∈ Rh×w×d is estimated using the
weight volume generation module, as shown in Fig. 2. The
inputs include the input gray image Y and the gray map of
the reference image YR.

First, we extract the deep features FY ∈ Rh×w×n and
FYR ∈ Rh×w×n of Y and YR respectively by a ResNet,
named ResNet1 in this paper. The hyper-parameter n is the
filter number.

Then, for each pixel (j, i), we concatenate its features
FY

j,i with features of each candidate pixel FYR

j,i+k. And the
concatenated features of all pixels and their candidate pixels
form the 4-D feature volume VF ∈ Rh×w×d×2n, where

VF
j,i,k = Concat(FY

j,i,F
YR

j,i+k). (3)

Next, the attention operation, which consists of two 3-D
convolution layers, is performed to obtain the attention vol-
ume A from the feature volume VF. Each element of A,
i.e. Aj,i,k, is the attention weight between features of pixel
(j, i) and its candidate pixel (j, i+k). The attention volume
A is used to refine the feature volume VF by

VA
j,i,k,p =

{
VF

j,i,k,p, p = 0 : n− 1

Aj,i,kV
F
j,i,k,p, p = n : 2n− 1

(4)

Next, the 3-D regulation, which is proposed by (Alex et al.
2017) to learn with context, is performed to estimate the
weight volume W from the attention weighted feature vol-
ume VA.

Once W is obtained, the rough colorization result can be
obtained by Eq. 1.

Table 1: Summary of our deep colorization architecture.
Each 2-D or 3-D convolutional layer represents a block of
convolution, batch normalization and ReLu.

Layer Description Output Tensor Dim.
Input gray image Y h× w

Gray map of reference Image YR h× w

ResNet1
1 5× 5 conv, n feat., stride 2 h

2 ×
w
2 × n

2 3× 3 conv, n feat. h
2 ×

w
2 × n

3 3× 3 conv, n feat. h
2 ×

w
2 × n

add layer 1 and 3 feat. (residue connection) h
2 ×

w
2 × n

4-17 (repeat layers 2,3 and residual connection)×7 h
2 ×

w
2 × n

18 3× 3 conv, n feat., no ReLu/BN h
2 ×

w
2 × n

Attention
19 3-D conv,1× 1× 1,n feat.,Sigmoid,no BN/ReLu h

2 ×
w
2 ×

d
2 × n

20 3-D conv,1× 1× 1,1 feat.,Sigmoid,no BN/ReLu h
2 ×

w
2 ×

d
2

3-D regulation
21 3-D conv, 3× 3× 3, n feat. h

2 ×
w
2 ×

d
2 × n

22 3-D conv, 3× 3× 3, n feat. h
2 ×

w
2 ×

d
2 × n

23 3-D conv, 3× 3× 3, 2n feat., stride 2 h
4 ×

w
4 ×

d
4 × 2n

24 3-D conv, 3× 3× 3, 2n feat. h
4 ×

w
4 ×

d
4 × 2n

25 3-D conv, 3× 3× 3, 2n feat. h
4 ×

w
4 ×

d
4 × 2n

26-34 (repeat layer 23, 24, 25)×3 h
32 ×

w
32 ×

d
32 × 2n

35 3× 3× 3, 3-D trans conv, 2n feat., stride 2 h
16 ×

w
16 ×

d
16 × 2n

add layer 35 and 31 (residual connection) h
16 ×

w
16 ×

d
16 × 2n

36 3× 3× 3, 3-D trans conv, 2n feat., stride 2 h
8 ×

w
8 ×

d
8 × 2n

add layer 36 and 28 (residual connection) h
8 ×

w
8 ×

d
8 × 2n

37 3× 3× 3, 3-D trans conv, 2n feat., stride 2 h
4 ×

w
4 ×

d
4 × 2n

add layer 37 and 25 (residual connection) h
4 ×

w
4 ×

d
4 × 2n

38 3× 3× 3, 3-D trans conv, n feat., stride 2 h
2 ×

w
2 ×

d
2 × n

add layer 38 and 22 (residual connection) h
2 ×

w
2 ×

d
2 × n

39 3× 3× 3, 3-D trans conv, 1 feat., no ReLu/BN h× w × d

ResNet2
40 5× 5 conv, n feat. h× w × n

41-57 repeat layers 2-18 h× w × n

ResNet3
58-75 repeat layers 40-57 h× w × n

ResNet4
76-92 repeat layers 40-56 h× w × n

93 3× 3 conv, 1 feat. (no ReLu, BN) h× w

Color residue joint learning
Our goal is to use the input gray image Y as guidance to
correct the rough colorization result C′, which may contain
wrongly colorized pixels due to occlusions.

As shown in Fig. 2, the rough colorization result C′ and
the input gray image Y are fed into two ResNets, named
ResNet2 and ResNet3, to get their features GC′

and GY re-
spectively. ResNet2 and ResNet3 have the same structure
but the parameters are trained separately. Then, GC′

and
GY are concatenated to form the feature map G, which is
fed into another ResNet, named ResNet4, to get the residue
color map Φ(C′,Y). By adding C′ and the residue color
map Φ(C′,Y), the final colorization result C is obtained.
The color residue joint learning module can be seen as a
high dimension joint filter.

Network architecture
We show our network architecture in Fig. 2. The detailed
layer information is shown in Table 1.

1) In the weight volume generation module, ResNet1 has
18 convolution layers in total. The first layer is with 5×5 ker-
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(a) The input pair of gray and color images. (b) Result of Welsh et al. (c) Result of Ironi et al. (d) Result of Gupta et al. (e) Our result. (f) Ground truth.

Figure 4: An example to compare the colorization results of Welsh et al.’s method, Ironi et al.’s method, Gupta et al.’s method,
and our colorization method. The region marked with the red box is shown in the second row. As shown, the comparison
methods fail to recover correct colors in the marked region. This example is under Setup1 in Table 2.

Table 2: Two setups of the colorization benchmark. We sim-
ulate the monochrome-color dual-lens system by adding sig-
nal dependent Gaussian noises with a given standard de-
viation where κ represents the noise-free signal intensity
(Achanta et al. 2007).

noise std. color camera monochrome camera
Setup1 0.03

√
κ 0.01

√
κ

Setup2 0.07
√
κ 0.01

√
κ

nel and stride 2. Here, we downsample the data with stride
2 to reduce memory cost. The resolution is recovered in the
last layer of the 3-D regulation. The following 16 layers are
8 repeated residue blocks and each residue block consists of
2 convolution layers with 3 × 3 kernel and a residue con-
nection. BatchNorm layers and ReLu layers are added after
each of the 17 convolution layers. The 18th layer is a con-
volution layer with 3 × 3 kernel and no BatchNorm layer
or ReLu layer is added. The filter number n of the 18 lay-
ers of ResNet1 is a hyper-parameter, which is set as 32 in
this paper. The attention operation consists of two 3-D con-
volution layers, i.e. layer 19 and 20 in Table 1. The kernel
of both layers is 1 × 1 × 1. The filter numbers are n and 1,
respectively. Sigmoid layer is added after layer 19 and 20.
The Sigmoid layer ensures that the attention weight ranges
from 0 to 1. In the 3-D regulation operation, deep encoder-
decoder designs are used, i.e. we encode sub-sampled fea-
ture maps, followed by up-sampling in a decoder. We form
the 3-D regulation network with four levels of sub-sampling.
For each encoder level, we apply two 3 × 3 × 3 convo-
lutions. To up-sample the volume in the decoder, we em-
ploy a 3-D transposed convolution. In addition, we add each
higher resolution feature map before up-sampling. Readers
may refer to (Alex et al. 2017) for more details. 2) In the
color residue joint learning module, we use three ResNets,
named ResNet2, ResNet3 and ResNet4. They have simi-
lar network structure with ResNet1. The difference between
ResNet2 and ResNet1 is that in the first layer of ResNet2, the
stride is set as 1 instead of 2. ResNet3 has the same network
structure as ResNet2. The difference between ResNet4 and
ResNet2 is that in the last layer the filter number is 1 and no
BatchNorm layer or ReLu layer is added. The parameters of
ResNet2, ResNet3, and ResNet4 are trained separately.

Experiments
Datasets
We use four popular stereo datasets in our experi-
ments, namely Cityscapes (Cordts et al. 2016), Middlebury
(Scharstein and Pal 2007), Sintel (Butler et al. 2012), and
SceneFlow (Mayer et al. 2016). These datasets contain pairs
of color images captured by the dual-lens system with two
color cameras. For realistic simulations, following (Jeon et
al. 2016), within each pair of images, we de-color one image
and use the de-colored result as the input monochrome im-
age, and the other color image is used as the input color im-
age. In addition, we imitate the light-efficiency differences
between color and monochrome cameras by adding differ-
ent amount of noises to the monochrome input images and
color input images. We configure two different setups for
this experiment. The details are summarized in Table 2.

Implementation details
The proposed deep convolutional network is implemented
with TensorFlow. All models are optimized with RMSProp
(Tieleman and Hinton 2012) and a constant learning rate of
0.001. We train with a batch size of 1 using a 256×512 ran-
domly located crop from the input images. We train the net-
work on the dataset of Scene Flow, which contains 35,454
training and 4,370 testing images, on an Intel I7 and an
NVIDIA Titan-X GPU. The loss function we use is the mean
squared error between the prediction results and the ground-
truth color maps. When testing the performance on the other
three datasets, we directly use the model trained on Scene
Flow for cross-validation.

Experiment I: Comparison with other colorization
methods
Comparison algorithms: First, we compare with state-
of-the-art reference-based colorization algorithms, i.e. the
methods of Welsh et al. (Welsh, Ashikhmin, and Mueller
2002), Ironi et al. (Ironi, Cohen-Or, and Lischinski 2005),
Gupta et al. (Gupta et al. 2012), Jeon et al. (Jeon et al. 2016),
Furusawa et al. (Furusawa et al. 2017) and He et al. (He
et al. 2018). In addition, we compare with two state-of-the-
art deep learning based automatic colorization algorithms,
i.e. the methods of Zhang et al. (Zhang, Isola, and Efros
2016) and Iizuka et al. (Iizuka, Simo-Serra, and Ishikawa
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(a) The input pair of gray and color images. (b) Result of Jeon et al. (c) Our result. (d) Ground truth.

Figure 5: An example to compare the colorization results of Jeon et al.’s method and our colorization method. The region
marked with the red box is shown in the second row. As shown, Jeon et al.’s method fails to recover correct colors in the marked
region. This example is under Setup2 in Table 2.

Table 3: Average PSNR values (dB) of different colorization
methods in four datasets under Setup 1 and 2 in Table 2.
CT, MB, ST, and SF are short for the datasets of Cityscapes,
Middlebury, Sintel, and SceneFlow, respectively.

PSNR(dB) under Setup1 PSNR (dB) under Setup2
CT MB ST SF CT MB ST SF

Welsh 37.89 30.28 34.94 30.12 35.06 29.60 32.70 29.83
Ironi 38.45 32.98 36.06 31.24 35.68 30.42 32.52 30.56
Gupta 38.09 31.04 35.45 29.65 34.53 30.72 33.31 29.73
Jeon 39.33 36.80 36.12 31.32 35.38 34.75 33.98 31.78

Furusawa 34.74 30.86 32.13 28.44 32.91 29.52 32.01 27.07
He 39.05 35.63 36.28 32.15 36.13 33.38 33.17 31.26

Zhang 29.38 29.12 29.34 17.26 29.57 28.41 29.44 18.56
Iizuka 31.30 29.19 33.97 21.02 31.39 28.42 34.02 23.13
Ours 44.26 41.94 43.88 45.18 43.21 40.30 42.71 44.16

2016), which could automatically colorize monochrome im-
ages without any reference images. The methods of Welsh et
al. (Welsh, Ashikhmin, and Mueller 2002), Ironi et al. (Ironi,
Cohen-Or, and Lischinski 2005), and Gupta et al. (Gupta et
al. 2012) do not assume short-baseline between the pair of
images. So, for each pixel in the monochrome image, the
search region is the whole reference image. For fair com-
parison, we re-implement the methods and make the search
range the same as our method, i.e. the candidate pixels are
with the same vertical position and their horizontal positions
range from i to i+d−1 as defined in the section of Formula-
tion. The method of Furusawa et al. is designed for coloriz-
ing manga images while we aim at general images. When
performing the method of Furusawa et al., the panel is set as
the whole reference image.

Results: We show the quantitative results in Tables 3 and
4. As shown, our method largely outperforms the compari-
son methods. And some qualitative colorization results are
shown in Figs. 4, 5, and 6. As shown in Fig. 4, Welsh et al.’s
method does not have good performance, because their as-
sumption, i.e. pixels with the same grayscale intensity will
have the same color value, is not true for many images. So,
some regions are wrongly colorized. Ironi et al.’s method
has problems for edges and small objects because many
unoccluded pixels are wrongly marked as occluded pixels,
and thus the colorized pixels of unoccluded pixels are not

Table 4: Average SSIM values of different colorization
methods in four datasets under Setup 1 and 2 in Table 2.

SSIM under Setup1 SSIM under Setup2
CT MB ST SF CT MB ST SF

Welsh 0.897 0.906 0.795 0.813 0.849 0.876 0.758 0.769
Ironi 0.897 0.940 0.918 0.890 0.778 0.715 0.814 0.747
Gupta 0.948 0.896 0.933 0.869 0.906 0.893 0.905 0.750
Jeon 0.953 0.958 0.943 0.927 0.914 0.953 0.924 0.902

Furusawa 0.841 0.860 0.794 0.795 0.825 0.782 0.728 0.734
He 0.951 0.949 0.948 0.919 0.928 0.947 0.931 0.889

Zhang 0.460 0.746 0.687 0.279 0.455 0.752 0.688 0.303
Iizuka 0.757 0.677 0.852 0.411 0.751 0.688 0.852 0.414
Ours 0.982 0.981 0.983 0.988 0.979 0.976 0.977 0.984

Table 5: Ablation study.
PSNR(dB) SSIM

CT MB ST SF CT MB ST SF

Stereo matching model 22.17 24.51 21.72 25.31 0.755 0.697 0.700 0.763

No weighted average 39.84 38.37 40.14 40.82 0.965 0.962 0.975 0.979

No attention 41.91 40.92 41.85 42.02 0.975 0.975 0.979 0.979

No color residue
joint learning

36.04 37.55 36.05 35.98 0.954 0.955 0.957 0.959

Ours 44.26 41.94 43.88 45.18 0.982 0.981 0.983 0.988

enough for color propagation. Gupta et al.’s method does
not perform well, especially for objects with complicated
textures. It is because the features of each superpixel are ob-
tained by averaging the feature values of all pixels in the
superpixel, which will decrease the accuracy of correspon-
dence searching for our problem. Jeon et al.’s method has
better results than the other comparison methods. But they
do not deal with the occlusion regions well. As shown in
Fig. 5, there are occlusions between the girl and the rock
behind her, and the results of their method are not correct.
Furusawa et al.’s result, as shown in Fig. 6, is not good
enough because the method assumes that the images are
manga images but in our problem the images are general im-
ages. He et al.’s results could not achieve high PSNR/SSIM
values because they do not consider locality and spatial
smoothness of the correspondence. This causes many in-
consistent correspondence matches, which will cause wrong
colorization. In addition, the perceptual loss minimizes the
semantic differences of unnatural colorization. The result
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(a) Input gray and color images. (b) Result of Zhang et al. (c) Result of Iizuka et al. (d) Result of Furusawa et al. (e) Our result. (f) Ground truth.

Figure 6: Examples to compare deep learning based automatic colorization algorithms, i.e. Zhang et al. and Iizuka et al., manga
image colorization algorithm, i.e. Furusawa et al., and our algorithm. As shown, due to not using the reference images as
guidance, the recovered colors of Zhang et al. and Iizuka et al. are not correct in most regions. The method of Furusawa et al.
fails in most regions too, because the assumptions of manga images are not true for general real-world images. The top and
bottom examples are from Setup1 and Setup2 in Table 2, respectively.

looks natural but is not always faithful to the ground truth
colors, e.g. some small regions have different colors from
neighboring regions, but they are wrongly colorized to have
similar colors with neighboring regions The colorization
qualities of the state-of-the-art CNN-based automatic col-
orization methods (Iizuka, Simo-Serra, and Ishikawa 2016;
Zhang, Isola, and Efros 2016) are worse than most of the
reference-based mathods and ours. As shown in Fig. 6, their
results have wrong colors in most regions. It is because they
are solving different problems. The input in these methods
is only one single gray image. The reference color image,
which could provide much useful color information during
the colorization, is not utilized at all.

Experiment II: Ablation study
The ablation study compares a number of different model
variants and justifies our design choices. We wish to evaluate
the importance of the key ideas in this paper: the weighted
average of colors of candidate pixels, the attention operation,
and the color residue joint learning module. The datasets
used in this experiment are under Setup1 in Table 2. All
the models are trained on the Scene Flow dataset, and tested
on the Cityscapes, Middlebury, and Sintel datasets. Table 5
shows the summary performance of different models.

First, we study the differences between our problem and
stereo matching. As mentioned in the section of Related
Work, it is possible to first estimate the disparity between
the input image and reference image, and then warp the col-
ors of the reference image according to the estimated dis-
parity to get the colorization result. We implement the state-
of-the-art stereo matching method (Alex et al. 2017), and
the results are shown in ‘Stereo matching model’ of Table 5.
Specifically, compared with our model, this model does not
have the operation of weighted average, color residue joint
learning and the attention operation. In addition, it is trained
using the ground truth disparity values. As shown in Table 5,
its performance is much lower than our model. The reason
is that it aims at estimating disparities, but, in the reference
image, pixels with wrong disparity values may have correct
colors, especially in textureless and repeated texture regions,
and pixels with correct disparity values may have wrong col-

ors, especially in occlusion regions. In short, the problems of
colorization and stereo matching are different and therefore
need different methods to solve them.

Second, we evaluate the contribution of the weighted av-
erage operation. In ‘No weighted average’, instead of per-
forming weighted average, we perform soft argmax after
getting the weight volume to obtain the best-matching can-
didate pixel for each pixel, and copy its color as the rough
colorization result. As shown in Table 5, its performance is
lower than our model, because the average weighted opera-
tion could make use of colors of more pixels in the reference
image.

Third, we evaluate the contribution of the attention op-
eration. In ‘No attention’, we do not perform the attention
operation and directly use the concatenated feature volume
as the input of the 3-D regulation. The results are not as good
as our model too.

Last, we evaluate the contribution of the color residue
joint learning module of our model. In ‘No color residue
joint learning’, we output the rough colorization result di-
rectly as the final result, without performing the color
residue joint learning module. As shown, the performance
decreases a lot without the color residue joint learning. It is
because the input gray image can provide guidance of spa-
tial color consistency. Using the guidance, the color residue
joint learning module could correct wrongly colorized pixels
by their neighboring pixels.

Conclusion
We have presented a novel deep learning method for col-
orization in monochrome-color dual-lens system. It per-
forms weighted average of colors of candidate pixels in the
reference image to obtain the colorization result for each
pixel in the input gray image. When learning the weight
values, we perform the attention operation and 3-D regu-
lation. To correct the results in occlusion regions, we pro-
pose the color residue joint learning module. Our method
achieves superior performance than the state-of-the-art
methods.
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