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ABSTRACT

Attention mechanism has greatly promoted the development of

Visual Question Answering (VQA). Attention distribution, which

weights differently on objects (such as image regions or bounding

boxes) in an image according to their importance for answering a

question, plays a crucial role in attention mechanism. Most of the

existing work focuses on fusing image features and text features to

calculate the attention distribution without comparisons between

different image objects. As a major property of attention, selectivity

depends on comparisons between different objects. Comparisons

providemore information for assigning attentions better. For achiev-

ing this, we propose an object-difference attention (ODA) which

calculates the probability of attention by implementing difference

operator between different image objects in an image under the

guidance of questions in hand. Experimental results on three pub-

licly available datasets show our ODA based VQA model achieves

the state-of-the-art results. Furthermore, a general form of rela-

tional attention is proposed. Besides ODA, several other relational

attentions are given. Experimental results show those relational

attentions have strengths on different types of questions.
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1 INTRODUCTION

The goal of Visual Question Answering (VQA) task is to output an

answer for an input image and a related question. It is an essential
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Figure 1: The proposed Object-Difference Attention Model.

“Rose” is focused because of not only “rose” itself and the

question, but also “the shorter orchid beside it.”

cognitive capability of human beings, which involve both visual

and linguistic computing to infer the answer. Building a machine

that performs VQA as well as humans is a big challenge in the

artificial intelligence community.

Researchers from both computer vision and natural language

processing have done lots of work on developing various VQAmod-

els and algorithms [13, 23], especially with the recent advances in

deep neural networks [3, 24, 35]. Among them, attention mecha-

nism, which was first introduced in [6], has been widely used in

VQA [20, 21, 25, 30, 31, 34, 35, 38]. It plays a core role in various

VQA models.

The nature of current attention mechanism is to assign a proper

attention distribution on different objects (e.g., image regions, bound-

ing boxes) in an image so that more attentions are paid on objects

with more useful information for answering questions. Therefore,

it is a major challenge to work out a proper attention distribution

for a problem on hand. Many different attention models have been

proposed in previous VQA work. Initially, a one-step linear fusion

is proposed to calculate the attention distribution on objects [6, 20].

Later, some studies calculate more accurate attention distribution

on objects through multi-step linear fusion [34, 35, 35]. Recent

studies use bilinear fusion to further increase the accuracy of the

attention distribution on objects [5, 8, 14, 36]. Most recently, multi-

feature attention is performed to calculate multi-feature attention

distribution on objects [12, 21, 30].
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As we can see, an attention distribution is the normalized impor-

tance of each object in an image for answering a given question.

Most of the current attention-based VQA models calculate the im-

portance of an object by considering only the question and the

object itself, although the importance is finally normalized over all

objects. The object itself is, of course, a valuable factor in show-

ing its importance for question answering, especially when the

question focuses on a specific object. For example, for answering

a question like “What sport is the man playing?” the object “man”

might be paid the most prominent attention.

However, objects themselves are often insufficient to provide

enough information on assigning proper attention distributions

for lots of other types of questions. For example, for answering a

question “What is the tallest flower?” accompanied with an image

shown in Figure 1, we find it cannot receive a correct answer when

a model assigns importance only depending on each flower sepa-

rately. The intuition behind the situation is clear. For answering

the question, all flowers should be found at first. There are a rose

and an orchid in the image. Then, comparisons between different

flowers are vital for giving the correct answer. Figure 1 shows both

rose-based comparisons and orchid-based comparisons. The correct

answer is achieved by comparisons between different objects.

The above case shows that comparisons provide more infor-

mation on how to assign attentions on different objects. It is not

the only case for needs of comparison. We argue that comparison

is helpful and even necessary in most of the question answering.

Comparison is helpful to identify which object is exactly you want;

comparison is beneficial to locate the position of an object; compari-

son is necessary to determine if two objects belong to the same class,

and so on. The problem is therefore how to include information of

comparisons between different objects in attention assignment.

This paper proposes a new type of attention, which is named

object-difference attention (ODA), to address the problem. For a

given image and a question, information from both the question

and comparisons between different objects in the image is used to

assign attentions on each object. The comparison is implemented

by a difference operator between two objects. ODA has lower com-

putational complexity than some previous attentions such as that in

Mutan [5]. Experimental results show our ODA based VQA model

achieves the state-of-the-art performance in three different publicly

available datasets, including VQA1.0, VQA2.0, and COCO-QA.

Furthermore, we extend ODA to general relational attention, and

give several different types of relational attentions with different

relational kernels. Experimental results show attentions with dif-

ferent kernels have strength in different types of question. Among

them, ODA shows advantages in most types of question.

The remainders of the paper are organized as follows: Section 2

is related work, Section 3 brings our ODA model for VQA task. In

section 4, we introduce a general form of relational attention and

give several relational attentions with different relational kernels.

Section 5 describes experiments on three public availabel datasets.

Section 6 draws some conclusions.

In summary, the contributions of this paper are threefold:

• We propose a simple but effective object-difference attention

(ODA) that compares objects explicitly when calculating the

attention distribution.

• We introduce a general form of relational attention, which

is different from previous single object based attention, and

give several different attention kernels.

• We achieve the state-of-the-art results on three publicly avail-

able datasets including VQA 1.0, VQA 2.0, and COCO-QA.

Different relational attentions show strengths on different

types of question.

2 RELATEDWORK

Most of the previous work on VQA employs attention mechanism,

which dramatically improves the performance of VQA task.

Initially, a one-step linear fusion is used to calculate the atten-

tion distribution. For example, the ABC-CNN model [6] maps the

question features to the visual space, and then computes the atten-

tion distribution of the image region by convolving the question

features and the image features. The CoAtt model [20] connects

the image feature and the question feature with a trainable param-

eter to obtain an affinity matrix. The image feature space and the

question feature space can then be transformed with this matrix,

and finally merged with a linear function to obtain the attention

distribution.

Some work tries multi-step attention. The SAN model [35] maps

the visual features into vectors with same dimensions as the ques-

tion features. The first-step attention distribution on image regions

is a linear combination of the visual features and the question fea-

tures. The attention distribution is updated by fusing the visual

features with updated question features. The SMem model [34]

fuses image features and question features through a correlation

matrix, and then sums the matrix in the textual dimension to ob-

tain the first-hop attention distribution of image regions. Similar to

the SAN, Smem takes the sum of the image features and the ques-

tion features as new question features. The second-hop attention

distribution is calculated by fusing these question features with

image features again. The DAN model [25] also performs multiple

attentions, but the image features and text features are activated

separately with tanh before fused by element-wise multiplication.

Some recent work uses bilinear models to fuse image features

and question features. The MCB model [14] first introduces the

bilinear pooling operation to fuse image features and question

features. It has big dimensions of features. To reduce the output

dimension, the MLB model [36] uses Hadamard product operations

to fuse image features with text features. Compared withMCB,MLB

can output features that are more compact. However, it converges

slowly and is sensitive to hyper-parameters. The MFB model [36]

combines the advantages of MCB and MLB for both capacity and

compact features. A one-dimensional non-overlapped window is

used to perform sum pooling over the Hadamard product of image

features and question features. The Mutan model [5] uses Tucker

decomposition tensor and achieves similar expression.

Most recently, multi-feature attention is performed to calcu-

late multi-feature attention distribution. The High-Order Attention

Model [30] calculates the attention distribution of the image, the

question, and the answer separately by learning high-order correla-

tions between these features. The ReasonNet Model [12] learns to

reason over a series of input features including face analysis, object

classification, scene classification separately at first, then combine
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the results to infer the answer. Similarly, The DualMFA model [21]

uses free-form regions and detection boxes as the input features.

As we can see, previous work on the attention mechanism in the

VQA task do not model the relation between objects to determine

the attention distribution for answering questions.

3 ODA FOR VQA

The overall structure of our model for VQA is illustrated in Fig-

ure 2. It consists of three parts: Data Embedding, Object-Difference

Attention (ODA), and Decision Making. Data Embedding extracts

image features from RCNN and question features from GRU. ODA

calculates an attention distribution for objects in image by explic-

itly comparing each image object with all other objects under the

guidance of the question. Decision Making fuses the image features

and question features to select the answer of the question.

We give the details of the three parts in following three subsec-

tions respectively, and then provide the loss function for training

the model.

3.1 Data Embedding

Faster-RCNN [28] is used to encode images as denoted in Eq. (1),

with the static features provided by bottom-up-attention [1]. GRU [7]

is used to encode text as denoted in Eq. (2), with the parameters

initialized with skip-thoughts [16].

V f = RCNN (imaдe) , (1)

Q f = GRU (question) , (2)

where V f ∈ Rm×dv denotes the visual embeddings of the top-

ranked m detection boxes, and Q f ∈ Rdq denotes the question

embedding.

To map V f and Q f to the same dimension, we employ a fully-

connection layer and a one-dimensional convolution layer respec-

tively as follows in Eq. (3)∼(4).

V = relu
(
Conv1d

(
V f

))
, (3)

Q = relu
(
Linear

(
Q f

))
, (4)

whereV ∈ Rm×d is viewed as a set ofm objects, i.e.V = {V1,V2, . . . ,Vm }.

Q ∈ Rd is the question feature. To write simple, we omit the bias b.

3.2 Object-Difference Attention (ODA)

We define ODA as in Eq. (5):

Ṽ = so f tmax
( [ (

Vi −Vj
)
� Q

]
m×md

Wf

)T
V , (5)

whereVi ,Vj andQ are defined in above subsection, (Vi −Vj ) �Q ∈

R
d is the comparison results of the ith image object and the jth

image object under the guidance of the question Q . As a result,[ (
Vi −Vj

)
� Q

]
m×md

is a matrix of sizem ×md with the ith row

representing the comparison results between the ith object and

all other objects.Wf ∈ Rmd×n is a learnable parameter matrix

that performs n glimpses to transform the comparion results to n

attention distributions. Ṽ ∈ Rnd is the attention results.

We have three notes on ODA as follows.

Firstly, different from previous attentions, ODA includes an ex-

plicit difference operator guided by a question, which is used to

explicitly compare different objects in an image. For any object Vi ,
the comparisons between Vi and other object guided by a question

should be crucial on measuring how important Vi is for answer-
ing the question. It is the major insight of ODA. It is cognitively

reasonable. According to cognitive neuroscience, one of the ma-

jor property of attention mechanism is selection [9]. The nature

of selection is comparison. Only by comparison, we can choose

something important. An object is worthy to be assigned more

attentions only when it shows much importance compared with

other objects. Furthermore, comparisons between different objects

help us to understand the internal structure of these objects better,

which is often useful for solving problems in hand. For example, ex-

isting work in image retrieval improves retrieval performance [19]

by comparing pairs of objects to capture the internal structural

relations between objects.

Secondly, although ODA includes difference operator, it is not

computational complexity, and even with lower computational com-

plexity compared with some previous attentions. We use Mutan [5]

as an example for comparison. The attention in Mutan in shown in

Eq. (6):

ṼMutan = so f tmax

([
S∑
s=1

(
ViW

(s)
1 � QW

(s)
2

)]
m×d ′

W ′
f

)T
V , (6)

whereW
(s)
1 ∈ Rd×d

′
,W

(s)
2 ∈ Rd×d

′
,W ′

f
∈ Rd

′×n are learnable

parameters. S is a hyper-parameter. For Mutan, the amount of pa-

rameters is ΘMutan ≈ 2Sdd ′, the time complexity is OMutan =

O(2Smdd ′). As a contrast, for ODA, the amount of model param-

eters is ΘODA ≈ md , the time complexity is OODA = O(2m2d).
As well known, normally,m ∈ [36, 100], d,d ′ > 300, S ≈ 5. Com-

pared with Mutan, ODA has smaller parameter size and lower time

complexity.

Thirdly, ODA can be extended easily in twofold. First, ODA is a

plug-and-play module which can be easily deployed in other models

that requires attention mechanism. Second, which is more exciting,

ODA is a particular case of a new type of attention which is called

relational attention. We will define and discuss the general form of

relational attention in Section 4.

3.3 Decision Making

In order to obtain more attention information, we further calculate

Ṽ (defined in Eq. (5)) p times with differnt learnable parameters and

concatenate them in Eq (7):

Z̃ =
[
Ṽ (1); Ṽ (2); . . . ; Ṽ (p)

]
. (7)

where [; ] represents the concatenation operation, Z̃ ∈ Rndp is the

concatenated image feature. If p = 1, we simply call the model ODA,

if p > 1, we call the model ODA×p. For the sake of brevity, Figure 2
only shows the case of p = 1.

We use Mutan to fuse the image feature and the question feature,

as denoted in Eq. (8):

H =
S∑
s=1

(
Z̃W

(s)
v � QW

(s)
q

)
, (8)
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Figure 2: The overall structure of our model for VQA.

where S ∈ R+ is a hyper-parameter. W
(s)
v ∈ Rndp×dh , W

(s)
q ∈

R
d×dh are learnable parameters, H ∈ Rdh is the fusion feature.

Finally, a linear layer with a sigmoid activation function is used

to predict the score of the candidate answer in Eq. (9)

â = σ (WhH ), (9)

where â ∈ R |D | is the predicted answer,D is the answer dictionary,

|D| is the number of candidate answers.

3.4 Loss Function For Model Training

We first calculate the ground-truth answer distribution by making

use of Eq. (10):

ai =

∑N
j=1 1{uj = i}

N −
∑N
j=1 1{uj � D}

, (10)

where a ∈ R |D | is the ground-truth answer distribution, ui is the
answer given by the ith annotator. N is the number of annotators.

For example, N is 10 in the VQA 1.0 and VQA 2.0 dataset and N is

1 in the COCO-QA dataset.

The KL-divergence is then used as the loss function between a
and â in Eq. (11):

L (â,a) =

|D |∑
i=1

ai log

(
ai
âi

)
. (11)

The model is trained by minimizing the loss function.

4 RELATIONAL ATTENTION

As we mentioned at the end of Section 3.2, ODA is a special case

of a relational attention. We introduce a general form of relational

attention (RA) and give some other cases of RA in this section.

First of all, any attention can be written as in Eq. (12):

Ṽ = fθ (K ,V ). (12)

It consists of three parts:

The first part is V ∈ Rm×dv . It is called attention target

where an attention-based model pays its attention to. m is

the number of objects in the target and dv is the dimension for each

object. The purpose of attention is to get the importance distribution

of thesem objects. For example, V can be an image, a piece of text,

or several candidate answers.

The second part is K ∈ Rm×m×dk . It is called attention ker-

nel. The attention kernel determines how the attention distribution

is calculated. If an attention kernel is obtained by a binary relational

operation R between two objects Vi and Vj in the set of attention

target under an external guidanceQ , as shown is Eq. (13), the atten-

tion kernel is called relational attention kernel (relational kernel in

brief).

K = R(Vi ,Vj ) � Q . (13)

An attention with relational kernel is called a relational atten-

tion. ODA proposed in Section 3 is a relational attention, where a

difference operator is used between different image objects (Vi −Vj )
under the guidance of question Q . We call the relational kernel in

ODA object-difference kernel (ODK). Under the general definition

of relational kernel, it is easy to introduce some other relational ker-

nels. We give some of them in Table 1. For example, OUK employs

union operator between different objects.

On the contrast, most of previous attention kernels are non-

relational since they include no relational operation between dif-

ferent objects. We also list some of them in Table 1.

It is worth mentioning that this paper only gives some of the

most fundamental relational kernels without external parameters.

These kernels show different strengths in VQA task, as described

in Section 5.4.

The third part is fθ . It is called attention operator. It deter-

mines how an attention kernel acts on an attention target. The

task itself often hints what fθ we should use. For example, in

the classification task, we need the comprehensive attention re-

sult Ṽ ∈ Rdv . As a contrast, in the machine translation task, we

need the new encoding Ṽ ∈ Rm×dv . For the former, we may use
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Table 1: Some Attention Kernels

Kernels Names (brief)

Relational

Attention

Kernels

(Vi −Vj ) � Q Object-Difference Kernel (ODK)

(Vi +Vj ) � Q Object-Union Kernel (OUK)

(Vi � Vj ) � Q Object-Intersection Kernel (OIK)

(Vi � Vi ) � Q Object-Self Kernel (OSK)

Non-

Relational

Attention

Kernels

Vi � Q Object Kernel (OK)

ViW1 � QW2 MLB [14]∑S
s=1

(
ViW

(s)
1 � QW

(s)
2

)
Mutan [5]

SumPoolinд(ViW1 � QW2, S) MFB [36]

fθ (K ,V ) = so f tmax(KWf )
TV withWf ∈ Rmdk ; for the latter, we

may use fθ (K ,V ) = so f tmax(KWf )
TV withWf ∈ Rdk .

In ODA, we use the former operator because we view the VQA

task as a classification task.

5 EXPERIMENTS

5.1 Datasets and evaluation metrics

We evaluated our model on three public datasets: the VQA 1.0

dataset [4], the VQA 2.0 dataset [10] and the COCO-QA dataset [27].

VQA 1.0 dataset. The VQA 1.0 dataset [4] contains a total of

614,163 samples, consisting of 204,721 images, 328,120 questions,

and 22,523 answers. Each sample contains an image, a question, and

ten human annotated answers. Images are from Microsoft COCO

image data [18]. The questions are divided into three categories:

“yes/no”, “number” and “other.” The dataset is divided into three splits:

train(40.4%), val(19.8%), test(39.8%). Further, the test set includes

two types: test-dev and test-std. The dataset has two subtasks:

Open-Ended (OE) and Multiple-Choice (MC).

VQA 2.0 dataset. The VQA 2.0 dataset [10] contains a total of

1,105,904 samples, consisting of 204,721 images, 332,793 questions,

and 29,332 answers. Specifically, for each question, there are a pair

of similar images that result in two different answers to the question.

As a result, VQA 2.0 dataset is more balanced compared to VQA

1.0 dataset. The VQA 2.0 dataset is also divided into three splits:

train(40.1%), val(19.4%), test(40.5%). Besides, the VQA 2.0 dataset

has no subtasks.

COCO-QA dataset. The COCO-QA dataset [27] contains a to-

tal of 117,684 samples, consisting of 69,172 images, 92,396 ques-

tions, and 430 answers. The dataset is only divided into two splits:

train(66.9%), test(33.1%).

Evaluation metrics. For the VQA 1.0 and VQA 2.0 dataset, we

use the evaluation tool proposed in [4] to evaluate the model, as

denoted in Eq. (14):

Acc(ans) =min

{
#humans that said ans

3
, 1

}
. (14)

For the COCO-QA dataset, we evaluate the model in Eq. (15):

Acc(ans) = 1{ans = ground_truth}. (15)

5.2 Implementation details

During the data-embedding phase, the image features extracted

from RCNN are the size of 36 × 2048 and mapped to 36 × 310. The

text features extracted from GRU are the size of 2400 and mapped to

310. In the object-difference attention phase, the attention hidden

dimension is 620. Attention glimpse is 2. In the decision making

phase, the Mutan dimension is 510; hyperparameter S is 5. Most of

the parameters above are general settings. All the nonlinear layers

of the model use the relu activation function and use dropout [32]

to prevent overfitting.

We implement the model using Pytorch. We use Adam [15] to

train the model. The learning rate is set to 10−4, beta is (0.9,0.999)

and eps is 10−8. We train the model with a batch_size of 128 and 60

epochs. More details, including source codes, will be published in

the near future.

5.3 Comparison with state-of-the-art

In this section, we compare ODA with the state-of-the-art models

on the VQA 1.0 dataset, the VQA 2.0 dataset, and the COCO-QA

dataset. In the VQA 1.0 dataset and the VQA 2.0 dataset, ODA is

trained on the train+val set and test on the test-dev and test-std set

respectively. In the COCO-QA dataset, ODA is trained on the train

set and test on the test set.

Firstly, Table 2 shows the comparison with the state-of-the-art

models on the VQA 1.0 dataset. As we can see, ODA achieves new

state-of-the-art performance in all subtasks. In the Multiple-Choice

task, ODA improves the overall accuracy of the state-of-the-art

MFB method from 71.4% to 72.23%. In the Open-Ended task, ODA

improves the overall accuracy of the state-of-the-art ReasonNet

method from 67.9% to 67.97%. It is worth mentioning that ODA

only uses one image feature while ReasonNet uses six input im-

age features including face analysis, object classification, scene

classification and so on.

Secondly, Table 3 shows the comparison with the state-of-the-

arts on the VQA 2.0 dataset. With the same image feature (100

boxes extracted from bottom-up-attention [1]), ODA×2 improves

the overall accuracy of the state-of-the-art LC_Counting model [37]

from 68.09% to 68.17% in the test-dev set.

Thirdly, Table 4 shows the comparison with the state-of-the-arts

on the COCO-QA dataset. ODA improves the overall accuracy of

the state-of-the-art Dual-MFA model from 66.49% to 69.33%.

In summary, our ODA model, which employs a simple difference

operator as relational kernel, achieves the state-of-the-art perfor-

mance in all three datasets. It shows that comparisons between

different objects actually play a crucial role in question answering.

5.4 Ablation study

In this section, we conduct some ablation experiments on the VQA

1.0 dataset. For a fair comparison, all the data provided in this

section are trained under the training set and test on the validation

set. In addition, all the models use the exactly same bottom-up-

attention feature (36 boxes) extracted from faster-rcnn.

Table 5 shows the summary performance of different loss func-

tions, different attention kernels and different state-of-the-art mod-

els on the VQA 1.0 dataset.

Firstly, we study the effectiveness of different loss functions

in Figure 3. “CE” denotes the softmax cross entropy loss, “BCE”

denotes the sigmoid binary cross entropy loss, and “KL” (used by

ODA) denotes the Kullback-Leibler loss. We can see that KL has the
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Table 2: Comparision with the state-of-the-arts on the VQA 1.0 dataset.

VQA 1.0 Test-dev VQA 1.0 Test-std

Open-Ended MC Open-Ended MC

Method All Y/N Num. Other All All Y/N Num. Other All

Single image

feature

SAN [35] 58.70 79.30 36.60 46.10 - 58.85 79.11 36.41 46.42 -

HieCoAtt [20] 61.80 79.70 38.70 51.70 65.80 62.06 79.95 38.22 51.95 66.07

DAN [25] 64.3 83.0 39.1 53.9 69.1 64.2 82.8 38.1 54.0 69.0

HighOrderAtt [30] - - - - 69.3 - - - - 69.4

MF-SIG-T3 [38] 66.00 84.33 39.34 56.37 - 65.88 84.42 38.94 55.89 70.33

MCB [8] 64.70 82.50 37.60 55.60 69.10 - - - - -

MLB [14] 64.89 84.13 37.85 54.57 - 65.07 84.02 37.90 54.77 68.89

MFB [36] 66.9 84.1 39.1 58.4 71.3 66.6 84.2 38.1 57.8 71.4

NMN [3] 58.6 81.2 38.0 44.0 - 58.7 - - - -

DNMN [2] 59.4 81.1 38.6 45.5 - 59.4 - - - -

N2NMN [11] 64.9 - - - - - - - - -

Multi image

feauture

Dual-MFA [21] 66.01 83.59 40.18 56.84 70.04 66.09 83.37 40.39 56.89 69.97

ReasonNet [12] - - - - - 67.9 84.0 38.7 60.4 -

Single image

feauture
ODA (36boxes) (ours) 67.83 85.82 43.03 58.07 72.28 67.97 85.81 42.51 58.24 72.23

Table 3: Comparision with the state-of-the-arts on the VQA 2.0 dataset.

VQA 2.0 Test-dev

Method All Y/N Num. Other

MF-SIG-VG (resnet) [38] 64.73 81.29 42.99 55.55

Up-Down (36boxes) [33] 65.32 81.82 44.21 56.05

LC_Baseline (100boxes) [37] 67.50 82.98 46.88 58.99

LC_Counting (100boxes) [37] 68.09 83.14 51.62 58.97

ODA (36boxes) (ours) 67.34 84.23 46.18 57.73

ODA×2 (36boxes) (ours) 67.52 84.3 46.62 57.96

ODA×2 (100boxes) (ours) 68.17 84.66 48.04 58.68

Table 4: Comparision with the state-of-the-arts on the COCO-QA dataset.

Method All Obj. Num. Color Loc. WUPS0.9 WUPS0.0

2VIS+BLSTM [27] 55.09 58.17 44.79 49.53 47.34 65.34 88.64

IMG-CNN [22] 58.40 - - - - 68.50 89.67

DDPnet [26] 61.16 - - - - 70.84 90.61

SAN [35] 61.60 65.40 48.60 57.90 54.00 71.60 90.90

QRU [17] 62.50 65.06 46.90 60.50 56.99 72.58 91.62

HieCoAtt [20] 65.40 68.00 51.00 62.90 58.80 75.10 92.00

Dual-MFA [21] 66.49 68.86 51.32 65.89 58.92 76.15 92.29

ODA (36boxes) (ours) 69.33 70.48 54.70 74.17 60.90 78.29 93.02

fastest convergence rate and the best convergence result (64.50).

Compared with KL, BCE has a lower convergence rate but similar

convergence result (64.48). In contrast, compared with KL, CE has

a similar convergence rate but lower convergence result (64.22).

Secondly, we study the effectiveness of different attention kernels

under different types of questions in Table 6.

It is interesting to find out that each kernel has its unique ability

to answer a particular type of questions.

(1) ODK achieves the best performance on the total task, and

achieves the best performance on more than half types of question,

such as “cause”, “color”, “object”, “other”, “type” and “yesno” among

all different kernels. It is not strange. As we have argued in sec-

tion 3.2, comparisons implemented by difference operator are a

major property of attention.

(2) Although ODK achieves the best performance on the total

task, different kernels show different strengths on different types

of question. For question types of “time”, OUK outperforms ODK.

It seems that uniting an object with other objects may help to

collect more environment information to guess the correct time.

For question types of “position”, OIK outperforms ODA. It uses
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Table 5: Ablation study on the VQA 1.0 dataset. For a fair

comparison, MFB is implemented without question atten-

tion.

Method Validation

ODA with CE loss 64.22

ODA with BCE loss 64.48

(Vi +V j) � Q (OUK) 64.17

(Vi � V j) � Q (OIK) 64.17

(Vi � Vi) � Q (OSK) 63.87

Vi � Q (OK) 63.82

RN [29] 58.85

MLB [14] 63.75

MFB [36] 63.87

Mutan [5] 64.06

ODA 64.50

Table 6: Performance of different attention kernels under

different types of questions on the VQA 1.0 dataset.

ODK OUK OIK OSK OK

action 92.42 92.44 93.07 92.71 93.40

cause 25.47 25.01 24.83 24.85 24.23

color 78.44 77.62 76.96 76.52 77.22

count 44.94 45.21 44.99 45.35 45.00

object 48.77 47.93 48.36 47.77 47.69

other 58.70 58.69 58.62 58.31 58.63

position 37.74 37.14 38.05 37.92 37.58

time 21.01 21.41 20.62 21.08 20.53

type 54.70 54.47 54.50 54.21 53.56

yesno 83.41 83.33 83.26 82.97 82.94

all 64.50 64.17 64.17 63.87 63.82

element-wise multiplication to obtain intersected location feature,

which may help to locate the relative position. For question types

of “count”, OSK performs best. It seems that OSK strengthens the

own information of the counted object instead of interacting with

others, which may help to count. For question types of “action”,

OK performs best, maybe just watching the features of the action-

related objects instead of interacting objects are helpful for this

type of question.

Thirdly, we study the effectiveness of our model. In the third

part of Table 5, we implement RN, MLB, MFB and Mutan in our

framework (exactly same input image feature and question feature).

RN models relations without attention which leads to lower results.

MLB, MFH, Mutan models attention without relation. All these

models are inferior to ODA.

5.5 Qualitative comparison between different
attention kernels

Figure 4 shows five examples, each containing the visualization of

five different kernels: ODK, OUK, OIK, OSK, OK. In each example,

only one of the kernel gives the correct answer which shows differ-

ent strengths of each kernel. In each picture, the object in the red
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55

60

65
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c

ODA with CE loss: Best epoch: 56, acc: 64.22
ODA with BCE loss: Best epoch: 58, acc: 64.48
ODA: Best epoch: 48, acc: 64.50

Figure 3: Performance of different loss functions on theVQA

1.0 dataset.

box is assigned the maximum value of attention weight. The ob-

jects in the orange, yellow, and blue boxes are assigned descending

attention weights.

For example, for the question “What type of markings does the cat

have?” in sample 1, ODK locates a red box with the attention weight

of 0.42 by explicitly comparing with all other boxes in the image

(See image in the first row and first column in Figure 4). The red

box includes both the white and black parts of the cat. Therefore,

the correct answer “black and white” is obtained. In contrast, other

kernels either have a wrong bounding box or focus only the black

parts of the cat.

6 CONCLUSIONS

In this paper, we propose a simple but effective object-difference

attention (ODA) for VQA task. It compares objects explicitly by

difference operator for calculating the attention distribution. It is

cognitively reasonable to reflect one of major property of atten-

tion. Experimental results on three publicly available datasets show

our ODA based VQA model achieves the state-of-the-art results.

Furthermore, we introduce a general form of attentions with differ-

ent attention kernels. Experimental results show those attentions

have strengths on different types of questions. Compared to pre-

vious attention, such as multi-step attention and bilinear models,

our proposed relational attentions are simple and with lower com-

putational complexity. It gives more space for constructing new

relational kernels to reveal more complex relations existing in prob-

lems, or combining several different relational kernels in a same

model to make use of different strengths that have been shown in

the paper.
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(Vi −Vj ) � Q (Vi +Vj ) � Q (Vi � Vj ) � Q (Vi � Vi ) � Q Vi � Q
(ODK) (OUK) (OIK) (OSK) (OK)

Example 1
Question: What type of markings

does the cat have?
Ground-truth: black and white

black and white � color � stripes � polka dots � color �

Example 2 Question: What time of day is this? Ground-truth: afternoon

evening � afternoon � evening � evening � evening �

Example 3 Question: Where are they going? Ground-truth: beach

down street � down street � beach � down street � down street �

Example 4 Question: How many horses are shown? Ground-truth: 2

1 � 1 � 1 � 2 � 1 �

Example 5 Question: What sport is this man playing? Ground-truth: basketball

baseball � baseball � baseball � baseball � basketball �

Figure 4: Visualization of different attention kernels.
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