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KDA: Knowledge Distillation Adversarial
Framework With Vision Foundation Models
for Landslide Segmentation

Shijie Wang*, Lulin Li, Xuan Dong™, Lei Shi*, and Pin Tao

Abstract—Landslides pose severe threats to infrastructure and
safety, and their segmentation in remote sensing imagery remains
challenging due to irregular boundaries, scale variation, and
complex terrain. Traditional lightweight models often struggle
to capture rich semantic features under these conditions. To
address this, we leverage vision foundation models (VFMs) as
teachers and propose a knowledge distillation adversarial (KDA)
framework to transfer high-capacity knowledge into compact
student models. Additionally, we introduce a dynamic cross-layer
fusion (DCF) decoder to enhance global-local feature interaction.
The experimental results demonstrate that, compared to the
previous best-performing model SegNeXt [89.92% precision and
84.78% mean intersection over union (mloU)], our method
achieves a precision of 91.93% and mloU of 86.53%, yielding
improvements of 2.01% and 1.75%, respectively. Source code is
available at https://github.com/PreWisdom/KDA

Index Terms—High-resolution remote sensing images, knowl-
edge distillation (KD), landslide segmentation, semantic segmen-
tation, vision foundation models (VFMs).

I. INTRODUCTION

ANDSLIDE identification is crucial for disaster pre-

vention and management. Accurate segmentation of
landslide areas supports a timely response. Although deep
learning has advanced segmentation performance, challenges
remain due to complex spatial patterns and large-scale varia-
tions [1].

Vision foundation models (VFMs) [2], [3], [4] achieve
strong performance but are hard to deploy in resource-limited
devices due to their high computational cost.

Knowledge distillation (KD) addresses model compression
by transferring knowledge from a large teacher to a compact
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student. However, traditional KD methods face key limitations.
First, soft label alignment fails to fully transfer spatial knowl-
edge, as downsampling in teacher models irreversibly removes
fine-grained features (e.g., edges and textures). Second,
large capacity gaps create representation bottlenecks—forcing
low-dimensional student features to mimic high-dimensional
teacher outputs via linear projection leads to feature loss from
dimensional mismatch [5].

Adversarial learning improves generalization and robust-
ness, helping models learn effective features and capture
fine-grained semantics in complex scenes [6], [7]. Inspired by
this, we propose the KD adversarial (KDA) framework to train
a lightweight yet powerful student model that inherits VFM
capabilities for refined segmentation. Our main contributions
are as follows.

1) We introduce KDA to address a key limitation of
traditional KD—student models often fail to capture
fine-grained spatial semantics (Fig. 1) when the capacity
gap is large.

2) We design a segmentation model combining a dis-
tilled backbone with a novel decoder. The decoder
uses dynamic multiscale and cross-layer fusion to retain
spatial details across scales while ensuring efficiency.

3) Extensive experiments show that our model outperforms
SOTA methods, with a lightweight design suitable for
resource-limited devices.

While KDA shows strong performance in our experiments,
it has the following limitations.

1) Sensitivity to Architecture: Distillation becomes less
effective when the teacher is a CNN and the student is
a Transformer, suggesting that cross-architecture knowl-
edge transfer needs improvement.

2) Empirical Loss Weighting: The KL divergence and mse
loss weights (0.6/0.4) are manually tuned via grid search,
lacking an adaptive weighting mechanism.

We aim to address these limitations in future work.

II. RELATED WORK

A. Landslide Segmentation

Landslide segmentation enables pixel-level detection of
slope failures via remote sensing, advancing geohazard anal-
ysis. Deep learning drives this progress by automatically
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Fig. 1. Heatmap visualization. KD mislabels farmlands as landslides, and
KDA better aligns with the teacher model.

learning features from Earth observation data [8], [9], [10],
[11], [12], [13].

Initial breakthroughs enhanced local feature discrimination:
Ji et al. [14] proposed 3-D spatial-channel attention; Soares
et al. [15] improved U-Net with fused topographic-spectral
features; Wang et al. [16] introduced boundary-aware Swin-
Transformers; and Chandra et al. [17] explored channel-spatial
attention synergies.

Current methods achieve SOTA in morphology tasks but
struggle with cross-regional generalization (e.g., training on
the Himalayas, deploying in the Andes) and spectral ambiguity
(e.g., distinguishing landslides from quarries or roads).

B. Vision Foundation Models

VEMs like SAM [2] and DINO [3] have transformed
computer vision with zero-shot capabilities. They handle mor-
phological diversity and scene variations without relying on
expensive labeled data, which is especially valuable.

Adapting VFMs to specialized tasks remains inefficient: full
fine-tuning yields best results but is computationally costly
[18]. Parameter-efficient methods offer alternatives—adapters
[19] add lightweight modules (e.g., LandslideNet [20]), LoRA
decomposes weight updates (e.g., SAMed [21]), and prompt
learning tunes input tokens (e.g., RSPrompter [22]). They
retain the full VFM at inference, limiting edge deployment.

C. Knowledge Distillation

KD [23] compresses models by transferring knowledge
from a high-capacity teacher to a lightweight student.
The student learns by minimizing divergence—typically KL
divergence—between their output distributions, capturing the
teacher’s representations. However, traditional KD often fails
to fully convey the rich information needed for accurate
segmentation.
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Fig. 2. Overview of our KDA framework. Or and Og are the teacher
and student models’ outputs. 7 and S are the discriminator’s outputs after
processing Or and Og. The discriminator improves by maximizing the 7-S
discrepancy, while the student model improves by minimizing it.

III. METHODOLOGY
A. KDA Framework

To address traditional KD’s limitations in transferring rep-
resentational capacity, we propose the KDA framework to
effectively distill semantic knowledge from a high-capacity
teacher to a lightweight student.

As shown in Fig. 2, the input data are processed simul-
taneously through two networks: a frozen pretrained teacher
model (Dinov2) and a trainable student model (pyramid vision
transformer, PVT [24]), producing feature representations Or
and Og, respectively. The output distributions of the teacher
and student are, then, aligned using KL divergence. Next, we
introduce a discriminator (with a frozen Dinov2 backbone and
a multilevel convolutional head) that receives outputs from
both models and is tasked with distinguishing whether a given
output originates from the teacher or the student.

The student model is trained with a loss combining KL
divergence and mse loss from the discriminator. The discrim-
inator uses mse loss to maximize the output gap between
the teacher and student, while the student minimizes it,
forming a minimax game. KL divergence aligns teacher and
student output distributions, helping the student learn high-
level semantics. MSE loss works at the pixel level, guiding the
student to capture local structures like boundaries and details.
This dual alignment enables the student to mimic the teacher’s
decisions while better recovering spatial details, improving
segmentation performance.

Our framework naturally avoids two major GAN issues:
mode collapse and training instability. Unlike GAN generators
that produce low-diversity or noisy outputs early on, our
student’s distillation output is semantically rich, eliminating
the need for high diversity or noise-like outputs and thus
sidestepping these problems.

B. Model Architecture

In Fig. 3(a), our model integrates a distilled PVT backbone
refined by KDA with a decoder. The backbone extracts mul-
tiscale semantic features rich in spatial and contextual details
from remote sensing images. These features feed into the
decoder, which uses dynamic multiscale selection and cross-
layer fusion to progressively upsample and combine them,
producing the final segmentation. This architecture combines
a high-performance backbone with an innovative decoder,
optimized for precise landslide boundary extraction.
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Fig. 3. CBR: convolution BatchNorm ReLU module. GAP: global average pooling module. UPM: upsampling module. (a) Overall architecture: the input
image passes through the distilled backbone (yellow, PVT-based), outputting multiscale features (4x, 8, 16X, and 32X). These features enter the DCF
decoder (green) to produce the segmentation mask. (b) DCF decoder: for each feature (F;): 1) CBR module adjusts channels; 2) GAP and GSoftmax compute
dynamic weights (A;); 3) weights refine features (® with F}); and 4) refined features (F;) are progressively upsampled and fused across scales (cross-layer

fusion) to combine coarse and fine details, outputting the result.
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Fig. 4. This image compares our KDA method with mainstream landslide segmentation approaches (red circles highlight key differences). KDA achieves
more accurate boundary localization and handles fine details like edges and small fragments better.

C. Dynamic Cross-Layer Fusion Decoder

In Fig. 3(b), our dynamic cross-layer fusion (DCF) decoder
inputs four feature maps at 4x, 8, 16X, and 32x downsam-
pling. Each passes through a convolution-BatchNorm-ReLU
(CBR) module to unify channel dimensions. Then, global
average pooling (GAP) produces channelwise attention maps,
refined by a shared-weight GSoftmax to generate dynamic
channel weights. These weights multiply the pre-GAP features
via skip connections, enhancing multiscale feature representa-
tion. The process is as follows:

Fll = RCLU(BN(COHV3 ><3(F,‘)))
A; = GSoftmax(GAP(F?}))

Fi=A;OF] (1)

where F; denotes the feature map extracted from the ith stage
of the backbone, and F/ represents the feature processed by
the CBR module. A; represents the channel attention weights
of the ith stage, obtained through GAP and GSoftmax opera-
tions. F; denotes the attention-refined feature. The operator ©
signifies the channelwise Hadamard product.

The decoder progressively upsamples and fuses features
from low to high resolution, combining coarse semantics with
fine spatial details. An upsampling and contextual module
(UCM), then, produces the final segmentation mask.

By dynamically computing channel attention, the decoder
adaptively emphasizes important features, suppresses noise
from low-value pixels, enhances multiscale integration, and
reduces computational cost.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset: We use the CAS Landslide dataset [25], which
contains 20865 high-resolution (512 x 512) images from satel-
lites and drones across nine regions. The dataset is split into
training, validation, and test sets with an 8:1:1 ratio. It captures
diverse environments, offering rich variability essential for
training and evaluating landslide segmentation models.

2) Implementation Details: The experiments were con-
ducted on a machine equipped with an NVIDIA 3090 GPU
with 24 GB of memory, running Ubuntu 22.04. The software
environment consisted of PyTorch 2.6.0, Python 3.11, and
CUDA 12.4. To prevent overfitting and improve generalization,
we applied a consistent data augmentation strategy across
all experiments, which included random rotation, horizontal
flipping, and vertical flipping.

In the first phase, it was trained with 200 epochs. The batch
size was set to 8. The distillation temperature was set to 5.
The discriminator’s learning rate started at 5 x 107 and was
gradually decreased to 5 x 107°. The student’s learning rate
started at 5 x 107 and was progressively reduced to 5 x 1078,
The AdamW optimizer was used, and the discriminator’s loss
function Lp being

Lp = max(Lmse(Dr, Ds)) 2)

where Dy and Dg denote the discriminator’s outputs when
processing the features from the teacher and student models,
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TABLE 1
Loss WEIGHT RATIO

Combination | mloUT | FIt
0.5 x KL + 0.5 x MSE 85.97 90.61
0.6 x KL + 0.4 x MSE 86.53 91.44
0.7 x KL + 0.3 x MSE 86.11 91.25

TABLE I

COMPARISON TO STATE-OF-THE-ART MODELS
ON CAS LANDSLIDE DATASET

Model IoUt | mloUtT | OA?T F11 Precisiont
FCN [26] 55.72 75.17 9497 | 72.13 62.98
UNet [27] 51.18 72.62 9441 | 70.60 61.80
DeepLabv3+ [28] | 68.14 82.40 96.88 | 81.26 74.28
MFFENet [29] 67.99 82.32 96.86 | 81.15 74.14
SegFormer [30] 68.94 84.62 95.52 | 91.20 90.27
SegNeXt [31] 69.05 84.78 97.24 | 90.80 89.92
KDA(Ours) 70.76 86.53 98.18 | 91.44 91.93

respectively. The student’s loss function Lg defined as
Lg = 0.4 x min(Lyse(Dr, Ds)) + 0.6 X Lxipiv(Or, Os)  (3)

where Or and Os denote the outputs from the teacher and
student models, respectively.

We use a weighted loss of 0.6x KL +40.4x mse to
balance semantic alignment and output diversity. A higher
KL weight stabilizes semantic learning, while moderate mse
prevents overfitting, enhancing generalization. To validate this
choice, we conducted an ablation study comparing three loss
combinations on the validation set.

Table I shows that the 0.6:0.4 ratio achieved the best perfor-
mance. A higher mse weight (>0.5) led to training instability
or mode collapse (common in adversarial settings), while a
lower weight weakened adversarial guidance. Thus, 0.6:0.4
offers a practical, empirically validated balance between per-
formance and stability.

For the second phase, it was also trained with 200 epochs,
the batch size was set to 16. The backbone’s learning rate
began at 5 x 107 and was reduced to 5 x 107, while the
decoder’s learning rate started at 5 x 10 and gradually
decreased to 5 x 107°. The AdamW optimizer was again used,
with the segmentation model’s loss function L, being

Ly = 0.4 x Lcg(GT, O) 4+ 0.6 X Lpoca(GT, O) “)

where GT € {0, 1}/*% denotes the binary ground-truth mask
and O € R¥*W represents the output from the segmentation
model, with H and W indicating spatial dimensions. The above
loss weight ratio was determined via grid search to achieve
optimal performance.

3) Evaluation Metrics: We used precision, overall accuracy
(OA), F1-score (F'1), intersection over union (IoU), and mean
IoU (mloU) as accuracy evaluation metrics. These metrics are
commonly employed to assess the performance of segmenta-
tion models.
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TABLE III

PERFORMANCE COMPARISON OF DIFFERENT TEACHER
MODELS AND KD METHODS

Method Teacher IoUT | mloUT | OA?T F17
Dinov2-B 68.82 | 84.67 | 96.64 | 88.93
Dinov2-L 69.11 | 8486 | 9632 | 88.62
<D Dinov2-G 69.25 | 85.17 | 9625 | 89.26
ConvNeXt-B | 68.61 | 8430 | 9620 | 88.73
ConvNeXt-L | 68.79 | 8459 | 95.83 | 88.51
ConvNeXt-XL | 6920 | 8496 | 9672 | 89.17
Dinov2-B 69.18 | 8491 | 96.54 | 89.08
Dinov2-L 7076 | 86.53 | 98.18 | 91.44
Dinov2-G 6934 | 8529 | 97.07 | 90.23
KDA(Ours) | -\ NeXtB | 6844 | 8416 | 9678 | 88.72
ConvNeXtL | 6896 | 8474 | 97.08 | 90.12
ConvNeXt-XL | 69.24 | 85.13 | 97.14 | 89.92

B. Comparison to State-of-the-Art Methods

As shown in Table II, the KDA method significantly out-
performed other models [26], [27], [28], [29], [30], [31] on
the CAS dataset, achieving SOTA performance. The intuitive
comparisons of KDA with other methods are highlighted in
Fig. 4. Compared to the previous best-performing model,
SegNeXt, KDA improved precision by 2.01%, IoU by 1.71%,
and mloU by 1.75%, demonstrating its effectiveness.

C. Ablation Studies

1) Distillation Method: First, to investigate the impact of
KD methods on segmentation performance, we employ two
distillation strategies—traditional KD and our KDA. Using
a unified student model (PVT) with selected teacher archi-
tectures, the distillation process is systematically evaluated
through IoU, mloU, OA, and F'1 metrics. This controlled com-
parison allows us to isolate the effects of different knowledge
transfer methodologies.

As shown in Table III, the KDA method outperforms the
KD method in model performance across the board, achieving
significant improvements in key metrics. For instance, with
Dinov2-L as the teacher model, IoU increased by 1.65%, mloU
improved by 1.67%, OA increased by 1.86%, and F1 increased
by 2.82%. In addition, KDA also shows a stable performance
improvement with other teacher models (e.g., ConvNeXt-L),
demonstrating its generalization ability.

2) Teacher Model: Second, to examine the scaling effects
of teacher models, we conduct comparative experiments across
six model scales spanning both Dinov2 and ConvNeXt fam-
ilies. The consistent use of PVT as a student model ensures
fair evaluation of teacher capacity influences.

As shown in Table III, increasing the size of the teacher
model does not lead to a significant performance boost. For
example, in the KDA method, the IoU only improved by
0.28% when using ConvNeXt-XL instead of ConvNeXt-L.
Moreover, we observe that Transformer-based teacher models
Dinov2 yield better results than CNN-based teacher models
ConvNeXt, likely due to architectural compatibility with the
Transformer-based student. When performance is comparable,
smaller and structurally aligned teacher models are preferable,
as they maintain effectiveness while reducing distillation costs.
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TABLE IV

PERFORMANCE COMPARISON OF DIFFERENT DECODERS. P AND F REPRE-
SENT THE PARAMETERS (M) AND FLOPS (G), RESPECTIVELY

Decoder | oUt | mloUT | OAT | FIt | PL| F|
DCF(Ours) 70.76 | 86.53 | 98.18 [91.44 | 0.27[22.26
UNet-Head [26] 55.87 | 75.04 |72.34|69.92 | 12.16 | 35.52
SegFormer-Head [30] | 68.94 | 84.62 |95.52(91.20| 0.76 | 24.08
SegNeXt-Head [31] |65.24 | 81.63 |93.72 | 80.87 | 3.87 | 28.09
UperNet-Head [32] | 66.74 | 80.63 |94.57 [85.79 | 0.97 | 23.04

3) Decoder Architecture: Finally, to validate the effective-
ness of our proposed DCF decoder, we compared it with the
decoders of popular segmentation models [27], [30], [31], [32]
under the same experimental setup. Using the PVT distilled
with the KDA method as the backbone.

As shown in Table IV, DCF achieves the highest scores
with the lowest computational cost. It is over 2x lighter in
parameters than UperNet-Head [30] (0.97M) and SegFormer-
Head [28] (0.76M), and vastly more efficient than UNet-Head
[24] (12.16M/35.52G). This establishes DCF as the new SOTA
in the accuracy-efficiency tradeoff.

V. CONCLUSION

We propose the KDA framework to enhance knowledge
transfer through adversarial training. KDA achieves new SOTA
performance with 86.53% mloU and 91.93% precision, sur-
passing SegNeXt by 1.75% and 2.01%, respectively. With only
0.27M parameters, the model is lightweight and suitable for
deployment on resource-constrained devices.

Despite its strong performance, KDA has two key limita-
tions. First, its effectiveness decreases when the teacher and
student use different architectures (e.g., CNN versus Trans-
former), highlighting the need for improved cross-architecture
transfer. Second, the loss weight ratio was determined through
grid search and lacks adaptivity.

To address these issues, future work will focus on
incorporating intermediate-layer feature alignment to bridge
architectural gaps and developing a dynamic loss weighting
strategy to adaptively balance semantic alignment and spatial
detailed learning during training.
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