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Abstract—Recognizing the emotional state of a person within the image in real-world scenarios is a key problem in affective
computing and has various promising applications. Local regions in the image, including different objects in the background scene and
parts within the foreground body, usually have different contributions to emotion perception of the target person. This, however, has not
been well exploited in most existing methods. In this paper, we propose to make relational region-level analysis to account for the
different contributions of different regions to emotion recognition. For the background scene, we propose a Body-Object Attention
(BOA) module to estimate the contributions of background objects to emotion recognition given the target foreground body. Within the
foreground body, we propose a Body Part Attention (BPA) module to recalibrate the channel-wise body feature responses to attend on
body parts that are more important. Moreover, we propose to model the emotion label dependency in real-world images, considering
both the semantic meanings of these labels and their co-occurrence patterns. We evaluate the proposed method on the EMOTIC and
CAER-S datasets, and experimental results show the superiority of our method compared with the state-of-the-art algorithms.

Index Terms—Human Emotion Recognition, Real-World Scenarios, Relational Region-Level Analysis, Body-Object Attention, Body
Part Attention, Emotion Label Dependency Modeling
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1 INTRODUCTION

W E study the problem of human emotion recognition in real-
world scenarios. As shown by example images in Fig. 1,

we aim at inferring the emotional state of one specific person
in the image (marked by the blue rectangle) in non-controlled
environments. The need of human emotion recognition has been
widely acknowledged in both industry and academia [1]. Recent
years also witness its extensive applications in human-computer
interaction [2], [3], healthcare [4], [5], digital entertainment [6],
[7], etc.

Traditional human emotion recognition methods only have
faces [8], [9], [10], [11], [12] or/and bodies [13], [14] as inputs,
while ignoring the fact that in practice, faces and bodies never
appear in isolation. As supported by Psychology studies [15],
a plenty of cues in the background scene can contribute to the
human emotion recognition in real-world scenarios. Some recent
works provide a good start to infer human emotions by taking
the background scene into consideration [16], [17]. Kosti et al.
[16] treat both of the foreground body and background scene
as a whole region respectively, and use two convolutional neural
network (CNN) streams with identical structures to extract their
features for emotion recognition. Lee et al. [17] treat the face of the
target person as the foreground to exploit human facial expression,
and propose to model cues in the background by hiding the face,
for emotion recognition. However, the common situation where
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Fig. 1: Examples of emotion recognition in real-world scenarios,
which aims at inferring the emotional state (c) of the target person
(marked in blue in the input image (a)). (b) shows that among
all regions, some regions (marked in green) are more related and
important for emotion recognition.

human faces are invisible is not considered in their method, and
other body parts except faces are modeled in the same way as
other background cues. In short, there still exists much space for
further improvement.

We notice that, for human emotion recognition in real-world
scenarios, different local regions in the image usually contribute
differently for understanding the target person’s emotional state.
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Fig. 2: The overall structure of our model, which makes relational region-level analysis for emotion recognition in real-world scenarios. The
Body-Object Attention (BOA) and Body-Part Attention (BPA) are proposed to attend on object regions and body parts that are more important
for emotion recognition in the background and foreground, respectively. The Emotion Label Dependency modeling (ELD) module exploits the
correlations between different emotion labels for more accurate emotion recognition. (Better viewed in color.)

In the background scene, some regions (as shown by the green
rectangles in Fig. 1) are more helpful for our perception of the
target person, including objects that the person is interacting with,
and other people nearby. Within the target foreground body region,
different parts, e.g. faces, arms, legs, also contribute to the emotion
recognition differently in specific scenarios.

In addition, real-world images generally contain multiple emo-
tion labels for the target person, and strong label co-occurrence
usually exists. For instance, a person in the image can be both
happy and excited (e.g. when he/she is playing games), while
the emotions happy and sad almost never co-occur on the same
person. Moreover, positive and negative emotions usually do not
appear simultaneously. Therefore, both the co-occurrence patterns
of different emotions and their semantic meanings can be useful
for emotion recognition.

Motivated by the above insights, we propose an end-to-end
deep neural network which makes relational region-level analy-
sis for emotion recognition in real-world scenarios. The overall
structure of our model is shown in Fig. 2. For the background
scene, we propose a Body-Object Attention (BOA) module to
estimate the contributions of different background objects given
the target foreground body, based on their appearance and ge-
ometry features. Features of these background object regions
are then reweighted and fused based on the estimated attention
weights. For the foreground body region, we propose a Body Part
Attention (BPA) module. Based on our observation that activations
of channels in the human emotion recognition network are closely

related to body parts, the BPA module recalibrates the channel-
wise feature responses to focus on parts that are more helpful for
emotion recognition. To exploit the dependency across emotion
labels for more accurate emotion recognition, we propose an
Emotion Label Dependency modeling (ELD) module based on the
Graph Convolutional Network [18]. Different emotion labels are
modeled as nodes in the graph, and both the semantic meanings
of emotion labels themselves and their co-occurrence patterns are
considered in the proposed module. The output from the ELD
module is further integrated with features from the foreground
body and background regions for the final emotion prediction.

Our experiments are conducted on the EMOTIC dataset [16],
[19] and the CAER-S dataset [17]. Both datasets are for emotion
recognition in real-world scenarios. Experimental results show
that our method could largely outperform the state-of-the-art
algorithms.

In general, this paper makes the following contributions:

• We propose to solve the problem of human emotion
recognition in real-world scenarios using relational region-
level analysis.

• We propose a Body-Object Attention (BOA) module for
estimating the contributions of objects in the background
scene to emotion perception of the foreground target
person.

• We design a Body Part Attention (BPA) module for refin-
ing features of the target foreground body, so that more
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important body parts can be focused.
• We design an Emotion Label Dependency modeling

(ELD) module based on Graph Convolutional Network
for modeling emotion label dependency using both their
semantic meanings and co-occurrence patterns.

The rest of this paper is organized as follows. We firstly review
the related work in Section 2. Then we present the proposed
method in Section 3. We report our experiment results and
comparisons with other state-of-the-art methods in Section 4 and
conclude in Section 5.

2 RELATED WORKS

2.1 Face and Body Based Human Emotion Recognition

Most existing studies for human emotion recognition focus on
faces, assuming that emotional states of people can be inferred
based on their facial expressions. Over the past years, facial
expression recognition has been extensively studied [8], [9], [20],
[21], [22], [23]. Early works mainly use face images captured
under controlled lab environments [24], which include limited
variations of head poses, illumination conditions, etc. Recent
studies explore facial expression recognition in the wild [22],
[23], and the expressions are also spontaneous and with diverse
poses. As for the algorithms used for facial expression recogni-
tion, traditional methods mostly use hand-crafted appearance and
geometry features extracted either from the whole face or specific
local face regions, e.g. Scale-Invariant Feature Transform (SIFT)
[9], Local Binary Pattern (LBP) [9], [24], Pyramids of Histograms
Of Gradients (PHOG) [20], which are then fed into supervised
classifiers e.g. Support Vector Machine (SVM) [25], random forest
[21], etc., to infer human emotions. Recent works are mostly deep
learning based ones, which use Convolutional Neural Networks
(CNNs) to jointly extract facial features and recognize emotions
[8], [11], [22], [23], and achieve satisfactory performance.

Since body gestures play an important role in conveying emo-
tions as well [26], some other methods utilize hand, shoulder, body
poses, etc., for emotion recognition. Karpouzis et al. [27] extract
emotion-related features through hand movements. Nicolaou et al.
[28] fuse shoulder gesture cues with those from facial expressions
to predict emotions. Schindler et al. [29] propose a neural model to
recognize emotions based on the body pose. Yang and Narayanan
[13] model body gesture dynamics to recognize the emotional
states of persons in a dyadic interaction. Deep learning for body
emotion recognition has also been explored recently [30], [31],
[32]. Barros et al. [30] propose a Multichannel CNN for emotion
recognition with face and upper body. In [32], Nguyen et al. pro-
pose a novel feature-level fusion approach based on multimodal
compact bilinear pooling for fusing multimodal emotion cues,
including facial expressions, poses, and body movements.

The limitations of face-based and body-based emotion recog-
nition algorithms are that they only focus on analyzing face
and body regions of the target person. However, in real-world
scenarios, plenty of cues from the background scene of the image
can be utilized for emotion recognition, which are ignored by
these algorithms. Moreover, the face and foreground body may
have occlusions or even be invisible, which can hardly be handled
by these algorithms.

2.2 Human Emotion Recognition in Real-World Scenar-
ios

In real-world scenarios, an individual’s face and body are usually
accompanied with the background scene, which can contribute
substantially to his/her emotion perception [15], [33]. Recently,
Kosti et al. [16], [19] make use of both foreground body and
background scene to recognize emotions of the target person in
the image. They also present a dataset, named EMOTIC, with
images containing people in contexts under natural environments.
However, they treat the whole background scene and target fore-
ground body as single regions to extract features for emotion
recognition. But, different regions/parts have different levels of
importance for emotion recognition and their method thus can not
make full use of the important cues. Lee et al. [17] propose the
Context-Aware Emotion Recognition Networks (CAER-Net) for
human emotion recognition in real-world scenarios. They exploit
the scene contexts by hiding the human faces in the image, and
model their contributions in a joint and boosting manner together
with those of the human face areas. Moreover, they build a dataset
called Context-Aware Emotion Recognition (CAER), which con-
tains a large number of TV show video clips with labeled emotion
categories. Their proposed method, however, has not modeled
local regions’ contributions meticulously, and can hardly deal with
occluded/invisible faces which commonly happens in real-world
scenarios. Zhang et al. [34] construct an affective graph to utilize
contexts for emotion recognition based on Graph Convolution
Network. However, the background cues are only used to enrich
the foreground body features, while not considered thoroughly for
human emotion recognition. The geometry features of foreground
and background cues are not exploited as well. Mittal et al.
[35] propose to perform emotion recognition based on multiple
modalities including faces and gaits of the target person, as well
as the background scene, while the analysis is not detailed enough
to model their specific contributions. Some body part cues, e.g.
the body gesture are also ignored in the emotion perception.

To sum up, existing methods for human emotion recognition
in real-world scenarios have not solved well in terms of the
utilization of cues provided by local regions in the foreground
body and background scene.

2.3 Attention Mechanisms in CNNs

The attention mechanism has been widely and successfully used
in convolutional neural networks for various tasks, e.g. machine
translation [36], image caption generation [37], object detection
[38], scene segmentation [39], etc. Vaswani et al. [36] propose the
first sequence transduction model Transformer, which is designed
with multi-headed self-attention. Hu et al. [38] model relations
between objects for object detection based on the attention mech-
anism. Fu et al. [39] propose to adaptively integrate local features
with their global dependencies via a Dual Attention Network
(DANet). Lee et al. [17] use the attention mechanism to seek
salient context information in the background scene by hiding the
face region. In this paper, we propose to model the contributions
of the background local regions and different body parts to
the emotion recognition of the foreground person in real-world
scenarios, respectively, through relational region level analysis
based on the attention mechanism.
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Fig. 3: Illustration of the BOA module and details of its weight computation operation.

2.4 Label Dependency Modeling

Modeling label dependency is a critical problem in multi-label
classification. In the field of computer vision, since images usually
correspond to multiple labels, e.g. a set of objects commonly
co-exist in the image, multi-label image classification has been
actively studied, where the label dependency is trying to be
captured for more accurate predictions. Recently, many methods
have been proposed to apply deep learning for multi-label image
classification. Wang et al. utilize the recurrent neural networks
(RNNs) to model higher-order label relationships [40]. The atten-
tion mechanism has also been applied to multi-label image classifi-
cation [41], [42], which captures semantic and spatial correlations
between labels based on attention maps. Some other methods
use the graphs to model the label dependency, which represent
label correlations in the graph, and learn related structures and
parameters in various ways, e.g based on conditional graphical
Lasso (CGL) [43], Graph Convolutional Network (GCN) [44],
etc. For emotion recognition, previous studies are mostly based on
the basic emotion categories which are mostly treated as mutually
exclusive, so the emotion label dependency has not been well ex-
plored. However, emotions in real-world images are usually more
complex than the basic emotions, and strong correlations between
different emotions actually exist. The method of Ruan et al. [45]
models the inner connections among labels based on an encoder-
decoder framework, and treats the multi-label classification task
as a sequence generation problem. But the label co-occurrence
patterns are not modeled in their method.

2.5 Visual Sentiment Analysis

Visual Sentiment Analysis (VSA) is a problem that is related to
human emotion recognition, which aims to predict the emotional
reactions of humans towards visual stimuli e.g. images [46], [47],
[48]. However, the image is not required to contain a person, and
even if persons exist in the image, the sentiment of the whole
image is still not always consistent with the emotional states of
these persons. Local regions have been specifically processed in
VSA, e.g. You et al. [47] discover the local regions relevant to
the image sentiment based on the attention mechanism, which is
achieved by jointly learning their corresponding weights guided
by descriptive visual attribute recognition, and building sentiment
classifiers. Song et al. [48] generate the attention distribution
over the regions of the image with the saliency map as the prior
for sentiment prediction. In this paper, instead of modeling the
relevance of local regions to the sentiment of the whole image,

we jointly train BPA and BOA for attending on important local
regions with the target person and in the background, respectively,
by estimating their contributions with respective to the emotion of
the target person.

3 METHOD

We propose to make relational region-level analysis for human
emotion recognition in real-world scenarios. The structure of our
model is shown in Fig. 2.

To model the contributions of different objects in the back-
ground scene to human emotion recognition, we propose a body-
object attention (BOA) module, which calculates the weights of
different background objects given the foreground body based on
their appearance and geometry features.

To attend on the parts of foreground body that are more
related to human emotion recognition, we propose a body part
attention (BPA) module to learn more representative features
by recalibrating channel-wise feature responses, based on our
observation that these channel activations are closely related to
body parts.

We also propose to model the emotion label dependency
based on the Graph Convolutional Network. Both the semantic
meanings of emotion labels and their cooccurrence patterns in the
training set are utilized in the proposed emotion label dependency
modeling (ELD) module. The output from the module is integrated
with the reweighted appearance features of the background object
regions and the refined foreground body appearance features to
get the final emotion recognition results.

3.1 BOA Module
The BOA module estimates contributions of different objects in
the background scene to the emotion perception of the foreground
target person. Appearance features of the background objects are
reweighted with respect to the foreground body, and then fused
for emotion recognition. Geometry features are also utilized in the
module to account for the relative distances and sizes between the
background objects and the foreground body.

Specifically, for the foreground body B, we denote its geom-
etry feature and appearance feature as BG and BA, respectively.
For each object in the background region, we denote its geometry
and appearance features as Om

G and Om
A , respectively, where

m = 1, ...,M , and M is the total number of background objects.
As shown in Fig. 3, with respect to the target foreground

body B, we model contributions of background objects to the
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recognition of the target person’s emotional state in the BOA
module via:

OB =
M∑

m=1

wmOm
A , (1)

where OB is a weighted sum of appearance features of back-
ground objects. The attention weight wm describes the contribu-
tion of the m-th background object to the emotion recognition of
the foreground body:

wm = softmax(wm
A + log(wm

G )), (2)

where wm
G and wm

A are respectively the geometry and appearance
weights.

Specifically, the appearance weight is computed as:

wm
A = dot(W1O

m
A ,W2BA)/

√
dm, (3)

where the appearance features Om
A and BA are first linearly

transformed by the matrices W1 and W2 respectively so that their
similarity can be measured in the projected subspace, and dm is
the dimension of feature after the linear transformation .

The geometry weight is computed as:

wm
G =WG · E(Om

G ,BG), (4)

where E is the embedding of a relative geometry feature
[log( |xm−xB |

wB
), log( |ym−yB |

hB
), log(wm

wB
), log(hm

hB
)]T , which de-

scribes the distances between the top-left corners (xB , yB) and
(xm, ym) of the bounding boxes of the foreground body and
background object m, and the ratios of their widths and heights
(wB , hB) and (wm, hm). The embedding is calculated using the
method proposed in [36], based on cosine and sine functions of
different frequencies. WG denotes the linear transformation of the
obtained embedding E(Om

G ,BG).
To combine the appearance features of foreground body BA

and the reweighted and fused appearance features of background
regions OB, we directly use the concatenation operation:

F = concat(BA,W3OB), (5)

where OB is linearly transformed by W3 before the concatenation
with BA, and W3OB has the same feature dimension as BA.
Since the multi-head attention, which performs single attention
h times to attend to information from different representation
subspaces, is proved to be useful [36], we also adopt it here.
Specifically, the calculation of OB is performed h times, and
all the obtained results are firstly concatenated and linearly trans-
formed (so that the obtained features still have the same dimension
as BA) before the concatenation with BA.

3.2 BPA Module
For the foreground body, different parts, e.g. face, arm, leg, etc.,
may contribute to the perception of emotional states differently. So
we propose to use the attention mechanism to guide the network to
pay more attention to the emotion-related body parts, i.e. refining
the foreground body feature BA.

Inspired by recent works showing that some filter responses
in CNNs are closely related to semantic parts [49], [50], we
firstly investigate whether channels in the CNN for emotion
recognition activate responses for different body parts. We use
the ResNet trained merely based on the foreground body for
emotion recognition and visualize the heat maps of activations
from different channels of the convolution layer. The heat maps

(a) Body region.             (b) Heat maps of three channel activations.

Fig. 4: Heat maps of different channel features of ResNet trained for
emotion recognition. This figure shows that the channel activations
are closely related to body parts, which motivates the proposed BPA
module.

Fig. 5: Illustration of the BPA module.

of three representative channels are shown in Fig. 4. As we can
see from this figure, the channel activations are closely related to
specific parts, i.e. face and arms, and legs, respectively.

Our observation is also supported by studies from other
researchers showing that some detection and classification net-
works have channels closely associated with parts [50], [51].
Accordingly, we propose to use channel-wise attention in emotion
recognition of the foreground body, to make the network focus on
parts that are more helpful.

In order not to include extra training data, we adaptively
recalibrate channel-wise feature responses using the squeeze-and-
excitation (SE) block [52]. Specifically, as shown in Fig. 5, the
output of the last convolution layer in ResNet module is firstly
passed through a global pooling layer to generate a channel-wise
descriptor, i.e. the feature maps are aggregated across their spatial
dimensions in the squeeze operation. Per-channel modulation
weights are then generated based on a self-gating mechanism in
the excitation operation. These weights are further applied to the
original feature maps to generate the final outputs of the BPA
module, i.e. the re-calibrated body part features.

3.3 ELD Module

In the ELD module, we exploit the dependency across emotion
labels explicitly for more accurate emotion recognition based
on GCN [18]. Both the semantic meanings of emotion labels
themselves and their co-occurrence patterns are considered in the
proposed module. Specifically, for emotion labels, we extract their
word embeddings Z ∈ RC×dz based on GloVe [53], where C is
the number of emotion labels and dz denotes the dimension of the
embedding. The co-occurrence matrix of emotion label pairs in
the training set is denoted as P ∈ RC×C . Pij is the probability
that the j-th emotion label appears when the i-th one exists and
is calculated as the number of co-occurring pairs divided by the
number of the i-th emotion label in the training set (Pii is set
as 0). We visualize P based on the training set of the EMOTIC
dataset (where details of the dataset and the annotated emotion
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Fig. 6: Visualization of the co-occurrence matrix P of emotion label
pairs in the training set of the EMOTIC dataset. The matrix demon-
strates the existence of label dependency across different emotion
labels.

categories can be found in Sec. 4) in Fig. 6, which shows the
existence of label dependency across different emotion labels.

GCN primally learns node representations by encoding both
node features and local graph structure [18]. Formally, given a
graph G = (V, E ,A), where V and E respectively denote the
vertices and edges between them, and A is the corresponding
adjacency matrix. Each node is associated with a feature vector
and here we use H ∈ RK×dv to denote the feature matrix for
all K nodes in the graph where dv is the feature dimension. For
one L-layer GCN, which consists of L graph convolution layers,
each layer learns the embedding for each node by mixing the
embeddings of its neighbors in the graph from the previous layer
via:

H(l+1) = σ(ÂH(l)W(l)), (6)

where H(l) ∈ RK×dl
v denotes the node embeddings at the l-th

layer (and we have H(0) = H), Â ∈ RK×K is the normalized
and regularized adjacency matrix, W(l) ∈ Rdl

v×d
l+1
v is the

transformation matrix to be learned, and σ(·) is the activation
function which is usually set as the element-wise ReLU.

For our problem, we treat each emotion category as one node
in the graph, and thus we have H = Z andK = C . The adjacency
matrix A in GCN can be calculated as the binarized matrix of P.
Specifically, Aij is set as 1 if Pij ≥ t and 0 otherwise, where
the threshold t is used to remove noisy edges. Inspired by the
work in [54], which proposes a re-weighted correlation matrix to
alleviate the over-smoothing problem of binary correlation matrix,
we calculate the re-weighted adjacency matrix Ar in GCN as:

Ar
ij =

 p/
C∑

j=1,i6=j
Aij , if i 6= j,

1− p, otherwise,
(7)

where p determines the weights assigned to a node with respect
to other correlated nodes. The output of GCN, i.e. H(L), will

be multiplied with the image representation learned in Eq. 5 to
calculate the final emotion classification result ŷ:

ŷ = H(L)F. (8)

So we have the feature dimension of H(L), i.e. dLv , set as equal to
the feature dimension of F.

4 EXPERIMENTS

4.1 Datasets
Our experiments are conducted on two datasets for emotion
recognition in real-world scenarios, namely the EMOTIC dataset
[16], [19], CAER-S dataset [55].

The EMOTIC dataset is for emotion recognition in real-
world scenarios, which contains a total number of 23,571 images
with 34,320 annotated people. Each person is labeled with 26
discrete emotion categories and continuous Valence, Arousal, and
Dominance dimensions. The 26 emotion categories cover a wide
range of emotional states, including Peace, Affection, Esteem,
Anticipation, Engagement, Confidence, Happiness, Pleasure, Ex-
citement, Surprise, Sympathy, Doubt/Confusion, Disconnection,
Fatigue, Embarrassment, Yearning, Disapproval, Aversion, An-
noyance, Anger, Sensitivity, Sadness, Disquietment, Fear, Pain,
and Suffering. The detailed definitions of these emotion categories
can be found in [16], [19]. The continuous Valence, Arousal, and
Dominance (VAD) values measure how pleasant or unpleasant
an emotion is, how likely the person is to take action under
the emotional state, and the sense of control over the emotion
[56], respectively. Since we focus on the emotion classification
problem in this paper, only the 26 discrete categories are used in
the experiments. Manually annotated body regions are provided in
the EMOTIC dataset. The training, validation, and testing sets are
split in the same way as [16], where numbers of samples in these
three sets are respectively 70%, 10%, and 20% of the total number
of the whole dataset. Some example images from the EMOTIC
dataset can be found in Fig. 1.

The CAER-S dataset contains 70K static images collected
from 79 TV shows, which is a subset of the CAER dataset
[55]. Video clips in TV shows are processed and refined by shot
boundary detector, face detector/tracking and feature clustering.
Then each refined video clip is annotated with basic emotion
categories including Anger, Disgust, Fear, Happy, Sad, Surprise,
and Neutral. The 70K static images in CAER-S dataset are
extracted from these refined and annotated video clips, which
are further randomly split into training (70%), validation (10%)
and testing (20%) sets. Some example images from the CAER-S
dataset for the seven basic emotion categories are shown in Fig. 7.

4.2 Implementation Details
We use the 50-layer ResNet [57] as the backbone network to
extract features for the foreground body, and initialize the module
using models pre-trained on the ImageNet datatset [58]. The
feature dimension of the foreground body is 2,048.

Features from the last convolution layer of the 50-layer ResNet
are used as the input for the body part attention module to guide
the generation of channel-wise weights. The two fully connected
(FC) layers used in the SE block are 32-d and 512-d, which are
followed by ReLU and Sigmoid, respectively. The recalibrated
features are then used as the appearance features of the target
foreground body BA.
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(a) Anger. (b) Disgust. (c) Fear. (d) Happy.

(e) Sad. (f) Surprise. (g) Neutral.

Fig. 7: Example images from the CAER-S dataset for the seven basic emotion categories.

For the background scene region, we use a pre-trained Faster
R-CNN [57], [59] for object detection and feature extraction. The
object types include vehicles, daily necessities, persons, animals,
etc. End-to-end training can also help adaptively estimate the
weights of different objects for the emotion recognition. We
choose the top-M detected objects and extract C4 features for
each object as its appearance features, as is done in [60], and we
set M = 50 in this paper. In the body-object attention module,
we set the head number as h = 16, and the fully connected layers
used for linear transformationsW1,W2,WG,W3, are 128-d, 128-
d, 128-d, and 2048-d, respectively. The feature dimension of F is
thus 4,096.

For the emotion label dependency modeling part, the GCN
we use contains two graph convolution layers, i.e. L = 2,
with their output dimensions set as 2,048 and 4,096 respectively.
The word embeddings extracted based on GloVe pre-trained on
the Wikipedia dataset have features dimension dz = 300. The
threshold t for calculating Aij is set as 0.2, and p in Eq. 7 is set
to be 0.2 following [54].

On the EMOTIC dataset, the loss function used for training
the whole model in an end-to-end way is defined as the weighted
mean square error loss following [16], [19]:

LEMOTIC =
1

N

N∑
i=1

C∑
j=1

αj(ŷi,j − yi,j)2, (9)

whereN is the number of training samples, C = 26 is the number
of emotion categories, and αi is the weight for the j-th category.
We have αj ∝ 1/ ln(λ + pj) and

∑C
j=1 αj = 1, where pj is

the probability of the j-th category in the training set, and λ is a
parameter which is set as λ = 1.2 in this paper.

On the CAER-S dataset, since no annotated face/body regions
are provided, we follow the work in [55] and use Dlib [61] to
detect faces in the image for inferring the emotional states of
the target person. Moreover, due to the fact that images in the
CAER-S dataset are annotated with basic emotion labels which
are mutually exclusive, no co-occurrence patterns of these basic
emotions exist. We thus remove the Emotion Label Dependency
modeling (ELD) module when training the proposed model on the
CAER-S dataset. For emotion recognition, one fully connected
layer after the feature extraction modules is used for inferring the
seven emotion categories. The cross-entropy loss function is used
for training [55].

The proposed deep convolutional network is implemented
with MindSpore. All models are optimized by stochastic gradient

descent with the learning rate 0.01 and momentum 0.9 on two
Nvidia 1080Ti GPUs. The batch size is set as 200 for training.

4.3 Experimental Results

Results on the EMOTIC dataset. We compare our method with
the state-of-the-art models for emotion recognition in real-world
scenarios, i.e. the methods of Kosti et al. [16], Zhang et al. [34],
Lee et al. [17], Mittal et al. [35], and Ruan et al. [45] on the
EMOTIC dataset. The methods of Kosti et al. [16] and Zhang et
al. [34] are trained based on 26 discrete emotion category labels
as well as the continuous VAD labels. Since only 26 discrete
categories are utilized in this paper, for fair comparison, we also
include the method where the same model as Kosti et al. [16] is
used, but is trained with merely the discrete criterion (i.e. only
based on the discrete emotion category labels), from the work of
Kosti [62] in the comparison. For the method of Lee et al. [17], we
re-implement the model and train it based on the discrete emotion
category labels (since neither results on the EMOTIC dataset nor
the codes are publicly available), and we use the body instead of
face of the target person in the input. The methods of Mittal et al.
[35] and Ruan et al. [45] are both trained only using the discrete
emotion labels [35].

The metric used for evaluating the emotion recognition perfor-
mance is the Average Precision (AP) [16], which summarizes the
precision-recall curve as the weighted mean of precisions achieved
at each threshold, i.e. the area under the precision-recall curve.
For the method of Ruan et al. [45], since no public codes are
available, we directly compare with it based on metrics used in
their paper, including the label-based metrics (C-F1) and example-
based metrics (O-F1), where the average is calculated over all
emotion categories and all testing examples respectively.

The comparison results are shown in Table 1 and Table 2.
Table 1 reports the AP scores for all 26 categories and the mean
average precision (mAP). As we can see from the table, our
method achieves higher AP scores compared to other methods for
most emotion categories. The mAP of our method is even higher
than Kosti et al. [16] and Zhang et al. [34], which are trained with
extra continuous VAD labels. Compared with Kosti with discrete
criterion (w/ DC) [62], Lee et al. [17] and Mittal et al. [35] which
have the same setting as ours, our method has better performance
for most of the 26 discrete emotion categories. Table 2 reports the
C-F1 and O-F1 scores of our method and the method of Ruan et al.
[45], where the results clearly show the superiority of our method.
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TABLE 1: Average precision (%) of different methods for each
emotion category on the EMOTIC dataset.

Methods
Category Kosti et Zhang et Kosti w/ Lee et Mittal et

Ours
al. [16] al. [34] DC1[62] al. [17] al. [35]

(1) Affection 27.85 46.89 19.46 23.25 41.83 37.93

(2) Anger 9.49 10.87 8.10 9.71 11.41 13.73
(3) Annoyance 14.06 11.27 9.79 13.43 17.37 20.87
(4) Anticipation 58.64 62.64 52.27 54.12 67.59 61.08

(5) Aversion 7.48 5.93 5.58 8.64 11.71 9.61

(6) Confidence 78.35 72.49 60.59 72.35 65.27 80.08
(7) Disapproval 14.97 11.28 8.10 15.26 17.35 21.54
(8) Disconnection 21.32 26.91 20.79 21.53 41.46 28.32

(9) Disquietment 16.89 16.94 14.66 16.81 12.69 22.57
(10) Doubt/Confusion 29.63 18.68 28.47 27.77 31.28 33.50
(11) Embarrassment 3.18 1.94 2.58 2.29 10.51 4.16

(12) Engagement 87.53 88.56 81.72 83.43 84.62 88.12

(13) Esteem 17.73 13.33 17.54 17.84 18.79 20.50
(14) Excitement 77.16 71.89 65.20 70.68 80.54 80.11

(15) Fatigue 9.70 13.26 7.87 8.91 11.95 17.51
(16) Fear 14.14 4.21 12.11 12.36 21.36 15.56

(17) Happiness 58.26 73.26 54.55 55.79 69.51 76.01
(18) Pain 8.94 6.52 4.79 9.22 9.56 14.56
(19) Peace 21.56 32.85 17.69 19.03 30.72 26.76

(20) Pleasure 45.46 57.46 42.34 43.22 61.89 55.64

(21) Sadness 19.66 25.42 9.11 10.39 19.74 30.80
(22) Sensitivity 9.28 5.99 4.09 7.34 4.11 9.59
(23) Suffering 18.84 23.39 7.41 9.71 20.92 30.70
(24) Surprise 18.81 9.02 16.77 13.70 16.45 17.92

(25) Sympathy 14.71 17.53 10.52 16.29 30.68 15.26

(26) Yearning 8.34 10.55 7.64 9.59 10.53 10.11

mAP 27.38 28.42 22.68 25.10 31.53 32.41
1 DC is short for discrete criterion.

TABLE 2: Label-based and example-based F1 scores of different
methods on the EMOTIC dataset.

Methods C-F1 (%) O-F1 (%)

ResNet [45] 8.18 28.35

Kosti et al. [16] 8.31 39.91

Ruan et al. [45] 13.42 45.77

Ours 15.10 48.07

The methods of Kosti et al. [16] and Kosti with discrete
criterion [62] treat all regions/parts in the background scene
and foreground body equally when extracting features. However,
some regions/parts are more important and helpful for emotion
recognition while others may not be closely related to the emotion
perception of the target foreground person. The method of Zhang
et al. [34] utilizes background contexts to enrich the features of
the foreground body, but contributions of different parts inside
the foreground body are not considered, and geometric relations
between the foreground and background regions are not modeled.
The method of Lee et al. [17] encodes the background contexts by
hiding the foreground region, and fuses the foreground and back-
ground features based on the attention mechanism, yet relations
between local regions are not well modeled. Mittal et al. [35] use
multiple modalities including faces and gaits of the target person

and context information to perform emotion recognition. But still
the contributions of other body parts, e.g. body gestures, are not
considered. And the whole image is passes through a ResNet
model with attention operations to capture the background con-
textual cues, where the analysis is so rough that important regions
cannot play the corresponding roles. Moreover, all these methods
have not taken the emotion label dependency into consideration.
The method of Ruan et al. [45] captures the inner connections
among labels by transforming the multi-label classification task
into a sequence generation problem, based on an encoder-decoder
framework. However, the analysis of the background regions only
includes an attention module, so the relations of different regions
are not modeled. On the contrary, our method could focus more
on the regions/parts that are closely related to emotions of the
target foreground person via relational region-level analysis. Both
appearance and geometry features are used in the BOA module.
We also model the dependency among different emotion labels.
Hence better performance is achieved by our method.

Some qualitative results of our methods on the EMOTIC
dataset are shown in Fig. 8. For each of the 26 discrete emotion
categories, we use the validation set to decide the threshold for de-
tection where Precision equals Recall. Then for each test sample,
if we denote Qdet as the set of detected emotions, and Qgt as the
set of ground-truth emotions, the Jaccard coefficient (JC) score for
this sample can thus be calculated as |Qdet ∩Qgt|/|Qdet ∪Qgt|
[16]. We randomly select some qualitative results with different
JC scores, where the wrongly predicted emotion categories are
marked in red. As we can see from the figure, by making relational
region-level analysis and label dependency modeling, our method
generally can infer the emotional states of the target person
effectively.

Results on the CAER-S dataset. We also evaluate the proposed
method quantitatively on the CAER-S dataset. The comparison
results, i.e. the classification accuracy, of different methods are
shown in Table 3 and Fig. 9. The methods of Kosti et al. [16] and
Zhang et al. [34] here are also trained with the cross-entropy loss.
Fine-tuned ResNet [17] is initialized using pre-trained models
from ImageNet, and fine-tuned on the CAER-S dataset. All the
methods use the face of the target person, along with the image,
as inputs, for emotion classification.

As the results demonstrate, compared to other state-of-the-art
methods, our model improves the emotion classification accuracy
by more than 7%, and the accuracy for each category also shows
the superiority of our model.

TABLE 3: Emotion classification accuracy of different methods on
the CAER-S dataset.

Methods Accuracy (%)

Kosti et al. [16] 74.48

Zhang et al. [34] 77.02

Lee et al. [17] 73.51

Fine-tuned ResNet [17] 68.46

Ours 84.82

Ablation Study. An ablation study is conducted in the experiment,
which compares a number of different model variants and justifies
the design choices of our method, based on the EMOTIC dataset.
Specifically, we wish to evaluate the three key components in this
paper, namely the BOA, BPA, and ELD modules. Table 4 shows
the performance of different model variants.
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Fig. 8: Qualitative results of our method on the EMOTIC dataset with different Jaccard coefficient (JC) scores (incorrectly inferred emotions
are marked in red).

Table 1

Kosti et 
al.

Zhang et 
al.

Lee et al. Fine-tuned 
ResNet

Anger 72.71 79.25 78.1 79.4

Disgust 80.77 91.59 83.97 75.22

Fear 90.15 91.67 86.42 79.03

Happy 75.09 77.73 63.16 56.45

Neutral 59.63 58.53 59.37 50.1

Sad 87.69 70.20 74.11 73.03

Surprise 55.38 70.19 69.47 66.1
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Fig. 9: Emotion classification accuracy for each category of different
methods on the CAER-S dataset.

Firstly, we evaluate the contribution of the BOA module. In
the methods without BOA, instead of performing the body-object
attention, we assign equal weight values to features of all top
objects detected by Faster R-CNN. As shown in the first and third
method columns in Table 4, we can see that by adding BOA (the
third method column), the mAP is improved by 2.65% (compared

to the first column). The reason is that even though Faster R-
CNN can extract objects within the images effectively, it cannot
model the importance of different objects with respect to emotions.
In comparison, our BOA module could help attend on regions
that are more important for inferring the emotional states of the
foreground person. We also evaluate the contribution of geometry
features used in the BOA module. The results are shown in the
eighth method column in Table 4, where the mAP drops about
0.55% compared to score of the full model in the last column.

Some example results of the BOA module are shown in Fig.
10, in which the emotion-related regions from background scene
are displayed along with their weight values describing how they
contribute to the emotion perception of the foreground person.

Secondly, we evaluate the contribution of the BPA module.
In the methods without BPA, instead of performing the body-part
attention module, we directly use the feature of the foreground
region extracted by ResNet. By comparing the second method
column to the first one in Table 4, we can see that the AP for most
emotion categories are improved, and the mAP is also increased
by about one percent. The reason mainly lies in that the body-
part attention could help refine the features by focusing on parts
of the foreground body that are more related to emotions of the
person. We also show some example results of the BPA module
in Fig. 11. In each row of the figure, the foreground body region
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TABLE 4: Ablation study results on the EMOTIC dataset (w/ and w/o are short for with and without, respectively).

Methods
BOA 7 7 3 7 3 3 7 3(no geo. feats) 3 3

BPA 7 3 7 7 3 7 3 3 3(MobileNetV2) 3

ELD 7 7 7 3 7 3 3 3 3 3

(1) Affection 31.73 32.05 36.66 33.10 37.41 32.62 30.09 38.66 36.81 37.93
(2) Anger 9.60 10.45 11.76 11.74 13.71 12.25 11.94 13.38 11.91 13.73
(3) Annoyance 11.95 13.66 16.97 17.39 18.22 19.37 17.81 20.11 17.77 20.87
(4) Anticipation 59.42 59.72 59.88 59.82 59.17 60.72 59.74 60.26 59.51 61.08
(5) Aversion 5.54 6.03 7.80 6.84 8.08 8.30 6.62 8.20 6.03 9.61
(6) Confidence 76.70 74.86 79.27 79.78 77.91 79.96 78.59 80.18 73.79 80.08
(7) Disapproval 11.99 14.87 15.91 18.80 16.82 20.58 17.92 21.92 17.46 21.54
(8) Disconnection 21.99 21.60 25.36 25.15 26.08 26.36 25.70 26.64 25.31 28.32
(9) Disquietment 16.13 17.30 19.42 18.77 20.71 21.97 21.82 21.84 19.26 22.57
(10) Doubt/Confusion 30.09 31.41 31.22 31.85 33.19 33.32 33.40 32.74 31.00 33.50
(11) Embarrassment 2.75 2.85 3.41 2.42 2.77 3.86 4.05 3.53 2.60 4.16
(12) Engagement 86.00 85.61 86.85 87.59 86.83 87.89 86.26 87.50 85.34 88.12
(13) Esteem 18.73 18.91 18.94 20.33 19.47 19.89 19.60 19.79 18.41 20.50
(14) Excitement 77.67 77.38 79.59 80.06 78.23 80.25 79.11 80.14 76.80 80.11
(15) Fatigue 12.28 14.14 16.57 13.84 18.19 15.71 15.70 18.08 17.38 17.51
(16) Fear 12.11 12.33 13.42 12.46 13.61 14.76 14.31 13.83 11.92 15.56
(17) Happiness 65.93 70.81 68.72 74.20 73.76 75.54 74.49 77.29 72.81 76.01
(18) Pain 7.33 8.66 10.80 9.42 10.06 14.64 13.86 14.36 9.46 14.56
(19) Peace 23.78 24.59 26.81 25.35 26.50 24.37 23.80 27.38 24.36 26.76
(20) Pleasure 47.52 48.44 49.88 53.32 52.30 52.85 51.24 54.55 51.99 55.64
(21) Sadness 17.43 20.15 23.79 20.73 25.92 26.60 25.01 29.71 23.25 30.80
(22) Sensitivity 5.73 6.23 7.48 8.34 6.65 9.38 8.00 8.04 7.08 9.59
(23) Suffering 15.16 18.62 22.71 17.85 23.01 28.33 26.70 28.78 21.87 30.70
(24) Surprise 17.43 17.36 16.91 17.17 17.18 17.84 18.29 16.96 16.92 17.92
(25) Sympathy 13.21 13.55 14.61 13.45 13.89 14.48 14.36 14.84 14.38 15.26
(26) Yearning 8.05 8.39 9.14 8.79 9.33 9.41 9.22 9.51 9.07 10.11

mAP 27.11 28.08 29.76 29.56 30.35 31.20 30.29 31.86 29.33 32.41

of the target person is shown along with the heat maps of three
top ranked channel features. The results demonstrate that our BPA
module can help the network focus more on parts that are helpful
for emotion recognition.

As shown in the fifth method column of Table 4, by combining
the BOA and BPA modules, the performance of our method
is further improved. This illustrates that our relational region-
level analysis can effectively account for different contributions
of different regions/parts to emotion recognition jointly.

Thirdly, the evaluation of the ELD module is also conducted.
We show the performance of our method without and with ELD
in the fifth and last method columns in Table 4. As shown, the AP
scores of almost all emotion categories are improved by modeling
the dependency between different emotions. And some emotion
categories benefit a lot from the ELD module, especially some
“negative” emotion categories, e.g. Pain, Sadness, and Suffering.
We also show some example results of the ELD module in
Fig. 12. Emotions inferred without and with the module are
shown in the figure, and the results also demonstrate qualitatively
that modeling emotion label dependency can contribute to more
accurate emotion recognition.

Lastly, we change the baseline model used in the proposed
method before the BPA module, i.e. ResNet50, to a popular
lightweight model MobileNetV2 [63]. The results are shown in
the ninth method column in Table 4. As we can see from the
table, even though the lightweight models are more efficient, their
recognition accuracy still gets sacrificed. We will explore how

to design an effective and efficient emotion recognition model in
the future work, if we need to make our method suitable for the
potential applications on computation-limited platforms.

We also evaluate the choices of some parameter values used
in the experiment. The head number h is a parameter for the
multi-head attention in the BOA module. The mAP scores on the
EMOTIC datasets for models with h = 4, 16, 32 are 31.78%,
32.4%, and 32.16%, respectively. So the change of head number
does not have a huge impact on the model performance, and we
choose to set h=16 in the experiments for other model variants. p is
the parameter for determining the weights assigned to a node with
respect to other correlated nodes in the ELD module, as shown in
Eq. 7. Changing the value of p in the set {0, 0.1, 0.2, . . . , 0.9, 1}
results in the change of the mAP scores in the range of 29.53% to
32.41%. And we choose to set p = 0.2 where the highest mAP
score is achieved.

Moreover, we evaluate the proposed method with/without the
ELD module on the Acted Facial Expressions in the Wild (AFEW)
dataset [64]. AFEW dataset contains movie video clips that cap-
ture facial expressions annotated with seven basic emotions. The
whole dataset is split into training (773 video clips), validation
(383), and test (653) sets. In the experiment, we follow [65] to
evaluate our method using the validation set since ground-truth
labels for the test set are not available, and the final emotion
classification result for each clip is calculated based on the
summation of predicted emotion scores of all frames. To evaluate
our method without ELD module, we set the adjacency matrix A
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Fig. 10: Example results of the BOA module. The left column shows
the input image and the target person. The right column shows the top-
3 attended regions (marked in green) and their weight values (marked
in red). These examples show that, given the target person, the BOA
module can help attend on emotion-related regions.

as an identity matrix.
The emotion recognition accuracies of our method with and

without the ELD module on AFEW dataset are 42.04% and
42.30%, respectively. Compared to the ResNet50 model [65]
which has the recognition accuracy of 40.99%, our method has
better performance. Since in our general emotion recognition
framework, no specific module is designed for accurately mod-
eling facial expressions, our performance is not that satisfactory
compared to the ResNet50 with deeply-supervised blocks (DSN-
ResNet50) proposed in [65], which has the recognition accuracy
of 43.86%. And since video clips in the AFEW dataset are only
labeled with 7 basic emotions, the ELD module is not beneficial as
expected. And the performance of our method slightly drops when
adding the ELD module, probably due to the increased model
complexity.

5 CONCLUSION

We have presented an end-to-end convolutional neural network for
emotion recognition in real-world scenarios based on relational
region-level analysis. 1) For objects in the background scene,
we propose the body-object attention module to estimate con-
tributions of the background objects to the emotion recognition
of the foreground body, based on the appearance and geometry
features of these regions. 2) For the foreground body, we propose
the body part attention module, which refines the channel-wise
body features to focus on emotion-related body parts. 3) The
dependency across different emotion labels is also exploited and

Fig. 11: Example results of the BPA module. From left to right are
the foreground body region of the target person, and heat maps of
three top ranked channel features. These examples show that the BPA
module can help the model focus on body parts that are related to
emotion perception of the target person.
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Fig. 12: Example results of the inferred emotions without and with the
ELD module (incorrect emotions are marked in red, and w/o is short
for without). These examples demonstrate that by modeling the label
dependency, more accurate emotion recognition can be achieved.

modeled based on both their semantic meanings and co-occurrence
patterns with Graph Convolutional Network. Experiments on two
datasets for emotion recognition in real-world scenarios, i.e. the
EMOTIC dataset and CAER-S dataset, show that our method
can achieve superior performance compared to the state-of-the-art
algorithms.
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