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Spatially Consistent Transformer for Colorization in
Monochrome-Color Dual-Lens System

Xuan Dong, Chang Liu, Xiaoyan Hu, Kang Xu, Weixin Li*

Abstract—We study the colorization problem in monochrome-
color dual-lens camera systems, i.e. colorizing the gray image
from the monochrome camera using the color image from the
color camera as reference. In related methods, cost volume
based CNN methods achieve the state-of-the-art results, but
they are costly in GPU memory due to building the 4D cost
volume. Recently, some slice-wise cross-attention based methods
are proposed for related problems. The slice-wise cross-attention
has much less costs in GPU memory but directly using them
for this colorization problem cannot generate competing results.
We make use of the non-local computation property of cross-
attention to propose a transformer based method. To overcome
the limitations of straight-forward slice-wise cross-attention, we
propose the spatially consistent cross-attention (SCCA) block to
encourage pixels of slices across different epipolar lines in the
gray image to find spatially consistent correspondence with pixels
of the reference color image. And, to further reduce the memory
cost while keeping the colorization accuracy, we design a pyramid
processing strategy to cascade a series of SCCA blocks with
smaller slice size and perform the colorization from coarse to
fine. To extract more powerful image features, we use several
regional self-attention (RSA) blocks with U-style connections.
Experimental results show that we outperform the state-of-the-
art methods largely on the synthesized datasets of Cityscapes,
Sintel, and SceneFlow, and the real monochrome-color dual-lens
dataset.

Index Terms—Spatially Consistent Cross-Attention, Pyramid
Processing, Transformer.

I. INTRODUCTION

Monochrome-color dual-lens camera systems have been
widely used in popular smart phones, e.g. Huawei P40,
Mate40, etc. Between the monochrome and color cameras,
there exist different hardwares, e.g. the color filter array,
and different software modules, e.g. white balance, demosaic,
etc. As a result, the monochrome camera has better light
efficiency [1], [2] than the color camera. Thus, as shown in
Fig. 1, the gray image IM ∈ Rh×w, where h is the image
height and w is the image width, from the monochrome
camera has higher quality, i.e. signal-noise ratio, than the color
image RC ∈ Rh×w×3 from the color camera but lacks color
information. And, by recovering colors of IM using RC as
reference, the colorization result IC∗ ∈ Rh×w×3 will have
higher quality than RC. Different from the other kinds of
colorization problems, e.g. automatic [3], [4], scribble-based
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(a) Input pair of gray image IM and color image RC. (b) Colorization result IC∗.

Fig. 1: The gray image IM and color image RC in the
input pair are shot by the monochrome and color cameras,
respectively. We propose a spatially consistent transformer
to learn to colorize IM using RC as reference, and get the
colorization result IC∗. The region marked with the red box
is shown in the second line.

[5], [6], reference-based [7], [8], etc., in the monochrome-
color dual-lens colorization problem, the recovered colors of
IC∗ should be of high quality and faithful to the physical
colors of the scenes according to the requirement of camera
systems. And, the pixels of RC that locate in the same epipolar
line with each pixel of IM can provide strong clues of color
information. So, when searching for corresponding pixels in
RC, the search range can be the 1D epipolar line instead of
the 2D whole image, making the solving of the problem easier
and less computational costly.

In the literature, 1) the first kind of solution is the hand-
crafted methods. Jeon et al. [1] use a traditional hand-crafted
stereo matching method to search for the disparity of pixels
between the pair of images, warp the color image, and use
post-processing to correct wrongly colorized regions due to
wrongly estimated disparity and occlusions. But the hand-
crafted methods need a lot of manually pre-defined parameters,
which are not always robust in practice. 2) With the success
of convolutional neural networks (CNN) in various computer
vision and image processing problems, the second kind of
solution is the CNN based deep learning methods. Because
the convolution operation is quite local, to deal with the large-
displacement problem, the existing methods, e.g. Dong et al.
[9], [10], have to build the 4D cost volume and regulate it
with 3D convolutions to obtain the correspondences, and use
them to perform soft warping of the reference color image to
get the colorization result. As shown in Fig. 2 (a), the size of
image features is h× w × C, where C is the feature channel
number. And they need to add another dimension to model
the correspondence relationships of pixels between gray and
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Fig. 2: Related solutions and our idea of the spatially consistent cross-attention (SCCA) structure (best viewed in color).

color images with the 1D search range d. The value of d needs
to be large enough to deal with the pixel with the maximum
displacement, resulting in the 4D cost volume with the high
memory cost of O(h · w · d · C). 3) Recently, cross-attention
based transformer structure provides a non-local deep learning
computation framework and is successfully used in related
problems of stereo matching and super resolution [11], [12].
As shown in Fig. 2 (b), the image is partitioned into h slices
and each slice, with the slice size of 1×w, contains one line
of pixels. And in each slice, the correspondence relationships
of every pair of pixels are estimated by the slice-wise cross-
attention, achieving the memory cost of O(h·w·w). But, in the
current slice-wise cross-attention process, each line of pixels
is treated as isolated data and the results across neighboring
epipolar lines may be inconsistent in some un-certain regions,
e.g. textureless regions.

We propose a transformer based method to make use
of the non-local computation property of cross-attention. To
overcome the limitations of the straight-forward slice-wise
cross-attention, our insights are that 1) the correspondence
relationships of neighboring slices across different epipolar
lines can communicate with each other during the cross-
attention process so as to obtain spatially consistently attended
weights and thus result in spatially consistent colorization
results. And 2) in each SCCA block, instead of separating
each row into a slice like the straight-forward cross-attention,
we separate the image into slices with the slice size of 1× s

where s is smaller than the image width w, and we use the
pyramid processing strategy to combine a series of SCCA
blocks of different resolutions to reduce the memory cost from
O(h ·w ·w) to O(h ·w · s) without affecting the colorization
accuracy.

Based on our insights, we propose the spatially consistent
transformer. The overall structure is shown in Fig. 3. In
the feature extraction part, we cascade a series of regional
self-attention (RSA) blocks with U-style skip connections in
multiple scales to encourage the features to have global and
local information. In the colorization part, 1) we propose the
spatially consistent cross-attention (SCCA) block, as shown in
Fig. 2 (c). Different from the straight-forward cross-attention
in Fig. 2 (b), after performing the slice-wise multiplication
of qW

b and kW
b to get the cost values cWb ∈ Rs×s which

contains the correspondence costs of every pair of pixels in
the slice b, we collect cWb across all h lines to build k cost
sub-maps (M1 ∈ Rh×s×s to Mk ∈ Rh×s×s, and k = w

s ).
And we perform multi-scale convolutions for each cost sub-
map via a U-Net to make cost values of slices across different
lines communicate with each other, so as to obtain spatially
consistently regulated cost values. 2) We take a pyramid
processing way. At each pyramid level i, the soft warping
results FC′

i and ICi from FC
i and RC

i are obtained by the
SCCA block, respectively. In addition, to correct errors due
to occlusions and large-displacement, we propose a feature
correction CNN block to get the corrected feature FC′′

i from
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Fig. 3: The overall structure of our spatially consistent transformer (a), and the detailed network structures of the SCCA (b)
and RSA blocks (c) (best viewed in color).

FC′

i with the upsampled result of FC′′

i+1 as guidance, and
an image correction CNN block to get the corrected image
IC
′

i from ICi with IMi and the upsampled result of IC
′

i+1 as
guidance.

Experiments are conducted on both synthesized datasets,
i.e. CityScapes [13], Sintel [14], and SceneFlow [15], and
real monochrome-color dual-lens dataset [16]. And the results
show that we outperform the comparison methods largely.

The key contributions of this paper include that 1) we pro-
pose the SCCA to encourage pixels of slices across neighbor-
ing epipolar lines to obtain spatially consistent correspondence
with pixels of the reference color image, so as to improve the
colorization accuracy. 2) We propose the spatially consistent
transformer to use small slice size and cascade a series of
SCCA blocks with the pyramid processing strategy to reduce
the memory cost while keeping the colorization accuracy.

II. RELATED WORKS

In related dual-lens colorization methods, as mentioned in
Sec. I, Jeon et al. [1] use a stereo matching based method,
but hard warping the reference color image by the estimated
disparity cannot generate accurate colorization results, espe-
cially in occlusion regions. The works in [2], [9], [10], [16]
make use of soft warping and propose the cost volume based
pure CNN model for the colorization. But, building the 4D
feature volume and regulating it with 3D convolutions have
high memory costs.

Besides dual-lens colorization, there exist a set of other
colorization tasks, including automatic [3], [4], [17]–[24],
scribble-based [5], [6], [25], [26], domain-specific [27]–[35],
text-based [36]–[39], diverse [40]–[42], reference-based [7],
[8], [27], [30], [43]–[48], and video colorizations [49]–[52].
But the challenge of these tasks usually lies in that the
reference color information is rough-grained, e.g. sparse hu-
man scribbles, text descriptions, reference images from other
scenes, or even no reference at all in automatic colorization.
So, related methods mostly focus on matching the rough-
grained reference color information with the input gray image
and exploiting clues of textures, structures, semantic meaning,
etc. in the input gray image itself to generate the results.

But, they usually do not consider how to estimate the fine-
grained colors if fine-grained and strong related color reference
exists. As a result, using these methods in our problem usually
results in rough-grained colorization results. In some other
colorization tasks, e.g. diverse, domain-specific, and video
colorizations, the data have specific property, e.g. sketch im-
ages, SAR images, cartoon images, etc. And their optimization
goals are different from ours, e.g. different colorization results
in diverse colorization, temporally consistent results in video
colorization, etc. Due to these differences, their methods are
not proper for our problem.

For correspondence searching in related tasks, e.g. stereo
matching [11], stereo super resolution [12], etc., existing meth-
ods include hand-crafted ones that use feature matching and
matching cost aggregation like [53], pure CNN methods, e.g.
cost volume based methods [54], and recently proposed cross-
attention based methods [11], [12]. The work in [11] performs
post-processing to use the spatial consistency property of
neighboring pixels to correct the error disparity values by
results of neighboring pixels, but the cross-attention blocks do
not consider the spatially consistency of neighboring pixels
across different epipolar lines. The axial attention [55], which
is similar with the example (b) of Fig. 2, i.e. straight-forward
cross-attention, also lets pixels of differently partitioned slices
only communicate with the ones within the same slice. We
notice that, within the cross-attention computation, regulating
the cost values of slices across neighboring epipolar lines
is more direct and beneficial to generate spatially consistent
results. So, in this paper, we propose the spatially consistent
cross-attention and build the model with pyramid processing
strategy .

Vision transformers have achieved promising results in var-
ious vision tasks, including high-level tasks [56], [56], [57] of
image classification, object detection, etc., and low-level tasks
of single image super resolution [58], automatic colorization
[59], etc. Most of them are proposed to provide a stronger
backbone than traditional CNN structures for the visual feature
extraction, e.g. global self-attention based methods of ViT
[56], DeiT [60], and regional self-attention based methods
like Swin Transformer [57]. Several works, e.g. IPT [58] and
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Fig. 4: An example to explain why the pyramid processing
can solve the large-displacement problem (Pyramid levels are
3 for simplification). At level 1, the pixels of the marker pen
(pointed by the red arrow) in the marked slice (marked in
blue) of the gray image cannot find corresponding pixels in
the color image by the slice-wise cross-attention because they
are partitioned into another slice. But, at level 2, the pixels
of the marker pen are partitioned into the same slice between
the two images. And at level 3, the slice width is equal to
the image width, so any large-displacement pixel can find its
corresponding pixel.

Colorization Transformer [59], use these transformer back-
bones for low level tasks and achieve good results. Inspired by
these successful use of vision transformers, especially in low-
level tasks, we adopt the transformer techniques and propose
a spatially consistent transformer according to the specific
requirement of colorization in dual-lens systems.

III. METHOD

The overall structure of our model is shown in Fig. 3.
We use cross-attention to search for the correspondences

between the input pair of monochrome and color images be-
cause the non-local deep learning structure in cross-attention,
i.e. computing the attention weights between the query and
key features and using the estimated attention weights to soft-
warp the value feature, provides a natural implementation
of the correspondence searching. In comparison with the
popular memory-costly cost volume based CNN structure,
cross-attention is more efficient and can avoid building the
costly 4D cost volume. While there exist several works to
use cross-attention for correspondence searching, e.g. stereo
super resolution method PASSR [12], cross-attention based
stereo matching [11], they always let the computation of each
slice be performed separately without any communication.
In comparison, during the cross-attention computation, we
insert a U-Net to let the attention weights between different
slices communicate with each other. This can encourage the
estimated attention weights to be more spatially consistent so
as to generate more accurate correspondences. In the spatially
consistent cross-attention (SCCA) block, as shown in Fig. 2
(c), for each slice b, after we perform slice-wise multiplication
between the query feature qW

b and the key feature kW
b to get

the original slice-wise cost values cWb ∈ Rs×s which contains
the correspondence costs of every pair of pixel in the slice
b, we collect the cost values cWb across all h epipolar lines
to get in total k cost sub-maps, denoted as M1 ∈ Rh×s×s

to Mk ∈ Rh×s×s. Each cost sub-map Mp ∈ Rh×s×s can
be seen as the feature map of the 2D image with the size of
h×s, and the feature dimension with the size of s contains the
correspondence costs along the search range s. By performing
2D convolutions for Mp, for each element (y, x) and its
neighboring elements (y + ∆y, x + ∆x) in different lines
or/and columns, Mp(y, x) and Mp(y + ∆y, x+ ∆x) will be
convolved and thus their correspondence costs along the search
range will be convolved, resulting in the communication of
correspondence costs of pixels across different epipolar lines.
We perform multi-scale convolutions for each cost sub-map
Mp via a U-Net to regulate the correspondence costs to be
spatially consistent, so as to help generate spatially consistent
outputs FC′ and IC.

In the soft warp and correction parts of Fig. 3, we design a
pyramid based pipeline to combine a series of SCCA blocks
in different resolutions to soft warp RC to the colorization
result IC∗ using FM and IM as guidance. To overcome the
large-displacement problem, when using the SCCA block for
the correspondence searching, a straight-forward method is to
set the slice size as s = w, but this will lead to the cost to be
O(hww). To further reduce the cost, we use the pyramid based
pipeline and the slice size s can be set to be smaller than w,
so as to reduce the cost to O(hws). The slice width of SCCA
blocks across all levels i is set as s = w

16 to achieve efficient
computation within the pyramid processing. At each pyramid
level i, the core part is the proposed SCCA block. Using FM

i

as guidance, it soft warps FC
i and RC

i to generate FC′

i and
ICi . The slice size in SCCA is set as 1× s across all levels i
(s = w

16 in this paper). The slice height is set to be 1 due to the
1D relative-displacement of pixels between IM and RC. As
explained in Fig. 4, at the top pyramid level, the slice width
s is much smaller than the image width w and helps reduce
the memory cost a lot. And at the bottom pyramid level, s
is equal to the image width so as to be large enough to deal
with the large-displacement problem. To repair errors due to
occlusions and limited search range using the 1×s slice, FC′

i

and ICi are corrected by the feature correction CNN block and
image correction CNN block, respectively.

In the feature extraction part of Fig. 3, instead of using
traditional CNN layers for the feature extraction, inspired by
SWIN, ViT etc., we extract features FM ∈ Rh×w×CE

and
FC ∈ Rh×w×CE

of the input gray image IM ∈ Rh×w and the
reference color image RC ∈ Rh×w×3 respectively by using a
series of regional self-attention (RSA) blocks, where h is the
image height, w is the image width, and CE is the feature
channel number. The advantage of RSA in comparison with
CNN is that it is better to extract non-local features of the
images and is also good at extracting local features of the
images. The RSA block is similar with the Swin block [57]
and we further revise it from the following two aspects. 1)
Similar with [61], we use convolutional layers instead of patch
embedding to extract the query, key, and value features from
the input because convolution is better to extract local features
of neighboring pixels for low level vision tasks. And 2) we
use the U-style short connections to cascade the RSA blocks
in multiple scales, so that the features can capture both non-
local/global and local information.
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A. Spatially Consistent Cross-Attention (SCCA)

SCCA blocks are used similarly in all the pyramid levels.
For simplification, at any pyramid level i, we name the input
of FM

i , FC
i and RC

i as FM, FC and RC in this subsection,
respectively.

As shown in Fig. 2 (c), first, we use three CNN blocks
to extract the query feature QW from FM, the key feature
KW and value feature VW from FC, respectively. Each CNN
block has three 3× 3 convolutional layers and ReLu. Second,
QW, KW and VW are partitioned into slices with the slice
size of 1×s. And each line of pixels is partitioned into k = w

s
slices. Third, the original cost values of each slice b, i.e. cWb ,
is calculated by

cWb = qW
b k

W(T )
b /

√
CW + BW, (1)

where we follow [57] to add the relative position bias BW

and feature dimension CW in this equation. The original cost
values cWb of slices across h epipolar lines are collected to
k cost sub-maps, i.e. M1 ∈ Rh×s×s to Mk ∈ Rh×s×s,
and we use a U-Net to process the k cost sub-maps sepa-
rately so that the cost values can be regulated with context
information across different epipolar lines. This processing
helps to obtain spatially consistent cost values, i.e. pixels
of neighboring epipolar lines in the input gray image have
similar correspondence with pixels in the color image. Then,
the regulated cost sub-maps are partitioned to slices with the
size of 1× s again, which is denoted as ĉWb . And we obtain
the attention values aWb of each slice b by

aWb = SoftMax(ĉWb ), (2)

and the slice-wise soft warping for the partitioned slices fCb
of VW is performed by

fC
′

b = aWb fCb . (3)

The soft warping results fC
′

b of all slices are collected to obtain
the soft warped feature FC′ . Similarly, the partitioned slices
rCb of RC are soft warped by

iCb = aWb rCb , (4)

and the soft warped results iCb of all slices are collected to
obtain the soft warped image IC.

B. Pyramid Processing

We build n pyramid levels (n is set as 5 in this paper)
in the proposed pyramid processing pipeline. The pyramid
processing is performed level by level to get the final result.
And the partition slice size in the SCCA block is set as 1×s (s
is set as w

16 , where w is the image width) across all pyramid
levels. The combination of n and s ensures that 1) at the
bottom pyramid level, the width of the partitioned slice in the
SCCA block, i.e. s, is equal to the image width so as to solve
the large-displacement problem. 2) At the top pyramid level,
s is smaller than w so as to reduce the memory cost.

As shown in Fig. 3, at each pyramid level i, with the features
FM

i and FC
i , and the image RC

i as input, the SCCA block
generates the soft warped feature of FC

i , i.e. FC′

i , and the soft
warped image of RC

i , i.e. ICi .

To correct errors of FC′

i , the upsampled feature of FC′′

i+1

from level i + 1 is used as the guidance, and the feature
correction CNN block (constructed by three 3 × 3 convo-
lutional layers and ReLu), denoted as f , processes them by
FC′′

i = f(U(FC′′

i+1),FC′

i ), where U denotes the upsampling
process using bilinear interpolation by the ratio of 2, and FC′′

i

is the corrected feature.
To correct errors of ICi , similarly, we use an image cor-

rection CNN block to get the corrected image IC
′

i . Here,
we use FC′′

i and FM
i as the feature guidance, and the gray

image IMi and the corrected color image IC
′

i+1 from level
i + 1 as the image guidance to perform the correction. And
IC
′

i = g2(U(IC
′

i+1), IMi , g1(FM
i ,F

C′′

i , ICi )), where both g1 and
g2 are constructed by three 3 × 3 convolutional layers and
ReLu. The corrected image IC

′

i+1 from level i + 1 is used as
guidance for solving the large-displacement problem and the
gray image IMi is used as guidance for solving the occlusion
problem.

C. Feature Extraction

Regional self-attention (RSA) blocks are cascaded with the
U-style short connections for feature extraction.

In each RSA block, given the input feature Fin, we use three
CNN blocks to extract the query, key and value feature maps
QE, KE, and VE, respectively. Each CNN block has three
3 × 3 convolutional layers and ReLu. Then, we partition the
feature maps into non-overlapped windows (with the window
size of a×a = 16×16 in this paper), and get the features qE

e ,
kE
e , vE

e of each window e. We follow [57] to add the relative
position bias BE and feature dimension CE into the softmax,
and the self-attention within each window is performed by

v̂E
e = SoftMax(qE

e k
E(T )
e /

√
CE + BE)vE

e . (5)

Then we concatenate v̂E
e over all windows to get V̂E, and get

the output feature Fout of this block by Fout = LN(V̂E) +
Fin, where LN denotes a LayerNorm layer.

Among different RSA blocks, the Swin shift [57] of the
window partition positions is used for the marked block in Fig.
3 so that different sets of neighboring pixels can be included
into the same windows among different blocks. In this way,
the pixels can have more chances to communicate with all
their neighboring pixels.

D. Loss

When training the model on synthesized datasets, where
the ground-truth color image GT of the input gray image IM

exists, we use SSIM [62] as the metric to design the training
loss Ls to measure the quality of the colorization result IC∗

in Cb and Cr color channels:

Ls = 1− 1

2
(SSIM(IC∗

Cb ,GTCb) + SSIM(IC∗
Cr ,GTCr)).

(6)
When training the model on real monochrome-color dual-lens
datasets, where GT does not exist, we follow [10], [16] to
perform the colorization in a cycle way. And we evaluate the
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TABLE I: Layers descriptions of our model. ‘conv’, ‘cat’, and ‘pooling’ are short for convolutional layer, concatenate, and
average pooling (with stride=2), respectively.

Input Input Dim. Output Output Dim. Layers Description
RSA at level j in Feature Extraction

Fin hj ·wj ·CE QE hj ·wj ·CE (3x3 conv, ReLu)×3
Fin hj ·wj ·CE KE hj ·wj ·CE (3x3 conv, ReLu)×3
Fin hj ·wj ·CE VE hj ·wj ·CE (3x3 conv, ReLu)×3

QE/KE/VE hj ·wj ·CE qE
e /kE

e /vE
e a · a · CE Partition

qE
e ,kE

e ,vE
e a · a · CE v̂E

e a · a · CE Eq. (5)
v̂E
e a · a · CE V̂E hj ·wj ·CE Collect

SCCA at level i, where k = wi
s

FM hi·wi·CW QW hi·wi·CW (3x3 conv, ReLu)×3
FC hi·wi·CW KW hi·wi·CW (3x3 conv, ReLu)×3
FC hi·wi·CW VW hi·wi·CW (3x3 conv, ReLu)×3

QW/KW/VW hi·wi·CW qW
b /kW

b /vW
b 1·s·CW Partition

qW
b ,kW

b NA cWb s·s Eq. (1)
cWb s·s cost sub-maps Mp hi·s·s collect

cost sub-maps Mp hi·s·s regulated sub-maps hi·s·s U-Net
U-Net in SCCA

cost sub-map Mp hi·s·s r1 hi
2
· s
2
·2s (3x3 conv, ReLu)×2,pooling

r1 hi
2
· s
2
·2s r2 hi

4
· s
4
·4s (3x3 conv, ReLu)×2,pooling

r2 hi
4
· s
4
·4s r3 hi

8
· s
8
·8s (3x3 conv, ReLu)×2,pooling

r3 hi
8
· s
8
·8s r4 hi

4
· s
4
·4s (3x3 conv, ReLu)×2,upsample

cat(r4,r2) hi
4
· s
4
·8s r5 hi

2
· s
2
·2s (3x3 conv, ReLu)×2,upsample

cat(r5,r1) hi
2
· s
2
·4s r6 hi·s·s (3x3 conv, ReLu)×2,upsample

cat(r6,Mp) hi·s·2s regulated cost sub-map hi·s·s (3x3 conv, ReLu)×2

first-time colorization results by the structure similarity loss
Lstructure between IC∗

Y and IM:

Lstructure = 1− SSIMcs(I
C∗
Y , IM), (7)

where SSIMcs is the revised SSIM metric (setting the co-
efficient of luminance dimension as 0, and the coeffients of
contrast and structure dimensions as 1 in SSIM). We also
evaluate the second-time colorization results ICycle by the
cycle consistency loss Lcycle between ICycle and the input
color image RC in the Cb and Cr color channels:

Lcycle = 1−1

2
(SSIM(ICycle

Cb ,RC
Cb)+SSIM(ICycle

Cr ,RC
Cr)).

(8)
Finally, the total loss for the real monochrome-color dual-lens
datasets Lr is Lr = 1

2 (Lstructure + Lcycle).

IV. EXPERIMENTAL RESULTS

A. Datasets

Our experiments are performed on both synthesized
datasets, including Cityscapes [13], Sintel [14], and SceneFlow
[15], and real monochrome-color dual-lens dataset in [2].
Following [1] and [2], to simulate the real monochrome-color
dual-lens systems, the original color images in synthesized
datasets are distorted with two setups, named Setup1 and
Setup2 (by adding Gaussian noises with the standard devi-
ation of 0.03

√
κ and 0.07

√
κ respectively, where κ represents

the noise-free signal intensity). PSNR (Peak Signal-to-Noise
Ratio) and SSIM [62] are used as the evaluation metrics for
objective evaluation.

B. Implementation Details

The detailed layers descriptions of our model are provided
in Table I. We implement our model using MindSpore. We use
an Nvidia 3090 card to train the models using the conventional
Adam optimizer with b1 = 0.9, b2 = 0.999 for 200 epochs
on each dataset. The initial learning rate is set as 0.0001
and decayed by half every 20 epoch. The batchsize is set as
1. Training our model roughly takes 1 day for 200 epochs.
In each dataset, 80% randomly selected images are used for
training and the left 20% images are used for testing.

C. Comparison Methods

We compare with state-of-the-art reference-based coloriza-
tion algorithms, i.e. the methods of Lu et al. (Gray2ColorNet)
[48], Lee et al. [27], Furusawa et al. (Comicolorization) [30],
He et al. 2018 [8], and He et al. 2019 [46], and Zhang et al.
[63], deep learning based automatic colorization algorithms,
i.e. the methods of Su et al. [22], Yoo et al. (Memo-Painter)
[23], Xiao et al. (DEPN) [24], Lei et al. [52], DeOldify
[64], Jin et al. (HistoryNet) [65], and Kumar et al. (Coloriza-
tion Transformer) [59] and state-of-the-art monochrome-color
dual-lens colorization algorithms, i.e. the methods of Jeon et
al. [1], Dong et al. 2019 [2], Dong et al. 2020 [16]. For fair
comparison, the learning based colorization methods are fine-
tuned on each dataset with the same training setting of ours.

D. Results

The quantitative evaluation results on the three synthesized
datasets are shown in Tables II and III. Some qualitative ex-
ample results on the real monochrome-color dual-lens dataset
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Input. Reference image. DEPN. Zhang. Gray2ColorNet.

Lee. Comicolorization. He 18. He 19. Lei.

Deoldify. Su. Memo-Painter. HistoryNet. Coloriz. Transformer.

Jeon. Dong 19. Dong 20. Ours.

Input. Reference image. DEPN. Zhang. Gray2ColorNet.

Lee. Comicolorization. He 18. He 19. Lei.

Deoldify. Su. Memo-Painter. HistoryNet. Coloriz. Transformer.

Jeon. Dong 19. Dong 20. Ours.
Fig. 5: Example results of different methods on the real monochrome-color dual-lens dataset. The region marked in blue is
enlarged for each image.

[2] and synthesized datasets are shown in Figs. 5 to 8. Due
to the lack ground-truth colors of the input gray images
from the monochrome camera, direct objective evaluation is
not possible on the real monochrome-color dual-lens dataset.
To perform quantitative evaluation on the real monochrome-
color dual-lens dataset, we follow [16] to let the colorization
methods perform cycle colorization, i.e. firstly colorizing the
input gray image using the input color image as reference to
get the first-time colorization result, and secondly colorizing
the de-colored map of the input color image using the first-

time colorization result as reference to get the second-time col-
orization result. And we evaluate the second-time colorization
results with the Cb and Cr color channel values of the input
color images as ground-truth. The PSNR and SSIM values are
shown in Table IV. The results are not the direct evaluation
of the colorization quality but may provide some indirect
verification of the colorization quality of different methods.
Besides the theoretical analysis of the costs of cost volume
based pure CNN, straight-forward slice-wise cross-attention
and our method in Sec. I, we also provide the practical costs in
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Input. Reference image. DEPN. Zhang. Gray2ColorNet.

Lee. Comicolorization. He 18. He 19. Lei.

Deoldify. Su. Memo-Painter. HistoryNet. Coloriz. Transformer.

Jeon. Dong 19. Dong 20. Ours.

Input. Reference image. DEPN. Zhang. Gray2ColorNet.

Lee. Comicolorization. He 18. He 19. Lei.

Deoldify. Su. Memo-Painter. HistoryNet. Coloriz. Transformer.

Jeon. Dong 19. Dong 20. Ours.

Fig. 6: Example results of different methods on the real monochrome-color dual-lens dataset. The region marked in blue is
enlarged for each image.
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Input. Reference image. DEPN. Zhang. Gray2ColorNet.

Lee. Comicolorization. He 18. He 19. Lei.

Deoldify. Su. Memo-Painter. HistoryNet. Coloriz. Transform.

Jeon. Dong 19. Dong 20. Ours. Groundtruth.

Input. Reference image. DEPN. Zhang. Gray2ColorNet.

Lee. Comicolorization. He 18. He 19. Lei.

Deoldify. Su. Memo-Painter. HistoryNet. Coloriz. Transform.

Jeon. Dong 19. Dong 20. Ours. Ground-truth.

Fig. 7: Example colorization results of comparison methods and ours on CityScapes dataset. The region marked in box is
enlarged for each image.
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Input. Reference image. DEPN. Zhang. Gray2ColorNet.

Lee. Comicolorization. He 18. He 19. Lei.

Deoldify. Su. Memo-Painter. HistoryNet. Coloriz. Transformer.

Jeon. Dong 19. Dong 20. Ours. Groundtruth.

Input. Reference image. DEPN. Zhang. Gray2ColorNet.

Lee. Comicolorization. He 18. He 19. Lei.

Deoldify. Su. Memo-Painter. HistoryNet. Coloriz. Transformer.

Jeon. Dong 19. Dong 20. Ours. Ground-truth.

Fig. 8: Example colorization results of comparison methods and ours on Sintel dataset. The region marked in box is enlarged
for each image.
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(a) Input pair of images. (b) No RSA. (c) No regulation. (d) Only top level. (e) Ours.
Fig. 9: Example ablation study results on the real monochrome-color dual-lens dataset.

TABLE II: Average PSNR (dB)/SSIM values of different
methods in the three synthesized datasets on Setup1.

CityScapes Sintel SceneFlow
Gray2ColorNet [48] 39.97/0.969 39.13/0.949 34.95/0.939

Lee [27] 42.36/0.977 37.46/0.955 37.63/0.951
Comicolorization [30] 23.50/0.880 23.46/0.865 22.35/0.845

He18 [8] 41.99/0.976 38.92/0.959 38.82/0.951
He19 [46] 42.34/0.977 38.20/0.958 36.99/0.945
DEPN [24] 38.65/0.973 31.67/0.939 32.55/0.929
Zhang [63] 41.59/0.977 38.36/0.957 37.54/0.942

Su [22] 38.98/0.976 35.49/0.949 34.19/0.941
Memo-Painter [23] 42.06/0.977 40.50/0.964 40.40/0.962

Lei [52] 35.07/0.970 31.19/0.935 30.97/0.930
DeOldify [64] 36.53/0.968 30.40/0.920 31.57/0.925

HistoryNet [65] 33.88/0.968 29.67/0.931 29.87/0.923
Colorization Transformer [59] 30.00/0.951 26.56/0.906 28.78/0.919

Jeon [1] 39.01/0.909 36.35/0.906 36.34/0.889
Dong19 [2] 44.26/0.982 43.88/0.983 45.18/0.988

Dong20 [16] 45.22/0.983 43.95/0.984 45.50/0.989
Ours 46.73/0.987 45.82/0.985 46.05/0.985

TABLE III: Average PSNR (dB)/SSIM values on Setup2.
CityScapes Sintel SceneFlow

Gray2ColorNet [48] 39.88/0.969 34.98/0.948 34.70/0.937
Lee [27] 42.36/0.977 37.46/0.955 37.62/0.951

Comicolorization [30] 22.97/0.871 23.29/0.863 22.31/0.841
He18 [8] 42.09/0.976 39.05/0.959 39.09/0.952

He19 [46] 41.89/0.977 38.00/0.957 36.98/0.944
DEPN [24] 38.56/0.973 31.64/0.939 32.51/0.928
Zhang [63] 41.37/0.976 38.15/0.956 37.19/0.941

Su [22] 38.98/0.976 35.49/0.949 34.19/0.941
Memo-Painter [23] 42.06/0.977 40.50/0.964 40.40/0.962

Lei [52] 35.07/0.970 31.19/0.935 30.97/0.930
DeOldify [64] 36.53/0.968 30.40/0.920 31.57/0.925

HistoryNet [65] 33.88/0.968 29.67/0.931 29.87/0.923
Colorization Transformer [59] 30.00/0.951 26.56/0.906 28.78/0.919

Jeon [1] 34.13/0.741 33.71/0.795 33.32/0.745
Dong19 [2] 43.21/0.979 42.71/0.977 44.16/0.984

Dong20 [16] 44.41/0.980 42.63/0.979 44.31/0.983
Ours 46.52/0.986 45.60/0.984 45.19/0.984

Table V, including the processing time per image, FLOPs per
image, and the GPU memory cost. The practical costs verify
our analysis that our method has less costs in GPU memory
and computation.

As the results show, automatic colorization methods [22]–
[24], [52], [59], [65] do not perform well in our problem,
because the reference color image which contains many useful
color clues is not used at all during the colorization. The
results of reference-based colorization algorithms [8], [27],
[30], [46], [48], [63], are usually not accurate. It is because
they usually assume that the reference color image is from
different locations and/or shot at different time and the con-
tents within the pair of gray and color images just share
similar semantics. Due to different assumptions, these methods
mostly focus on matching the rough-grained reference color
information with the input gray image. But, they usually do
not consider how to estimate the fine-grained colors if fine-
grained and strongly related color reference exists. Dual-lens

TABLE IV: Average PSNR (db) and SSIM values of the
second-time colorization results of different colorization meth-
ods on the real monochrome-color dual-lens dataset.

PSNR SSIM
Gray2ColorNet [48] 33.67 0.9135

Lee [27] 29.54 0.8888
Comicolorization [30] 25.53 0.8521

He18 [8] 33.68 0.8986
He19 [46] 34.02 0.9042
DEPN [24] 27.84 0.8747
Zhang [63] 31.14 0.9061

Su [22] 34.12 0.9204
Memo-Painter [23] 35.80 0.9193

Lei [52] 25.53 0.8612
Deoldify [64] 25.87 0.8587

HistoryNet [65] 25.30 0.8623
Colorization Transformer [59] 24.11 0.8495

Jeon [1] 34.44 0.8319
Dong19 [2] 31.25 0.9067

Dong20 [16] 42.99 0.9707
Ours 43.82 0.9759

TABLE V: Computational and GPU memory costs of cost
volume based pure CNN (CV based CNN), straight-forward
slice-wise cross-attention (Straight CA) and ours.

Methods Time(s) FLOPs(G) Memory(MB)
CV based CNN 0.788 360.78 18557

Straight CA 0.683 2822.9 3954
Ours 0.267 16.56 1426

colorization algorithms [1], [2], [16] are not competing with
ours too. The combination of stereo matching and warping
in [1] is not suitable for colorization, especially in occlusion
regions, because estimating correct colors and disparity are
two different problems. The cost volume based CNN models
in [2], [16] have big memory costs in building the 4D feature
volume and thus they have to set a small number for the feature
channel to enable to colorize large-displacement pixels, which
limits the learning ability of the CNN. In comparison, the
proposed SCCA exploits the spatial consistency property of
neighboring pixels to overcome the limitations of straight-
forward cross-attention, i.e. pixels across different epipolar
lines lack communications. In addition, we reduce the search
range in the SCCA blocks to lower the memory cost while
keeping the colorization accuracy with the pyramid processing
pipeline.

We also performed a user study for the comparisons on
the real monochrome-color dual-lens dataset [2] with the help
of 30 annotators in total. There are five annotation choices,
including ‘Perfect’, ‘Few Errors’, ‘Partly Wrong’, ‘Mostly
Wrong’, and ‘Totally Wrong’. Each annotator annotates the
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Table 1

Perfect Few Errors Partly Wrong Mostly Wrong Totally Wrong

Gray2ColorNet 0.05 0.7 0.2 0.05 0

Lee 0 0 0 0.11 0.89

Comicoloriz. 0 0 0 0.157894736842105 0.842105263157895

He18 0.05263157894736840.684210526315789 0.210526315789474 0.0526315789473684 0

He19 0.07894736842105260.815789473684211 0.105263157894737 0 0

DEPN 0 0 0 0.13 0.87

Zhang 0 0 0 0.105263157894737 0.894736842105263

Su 0.09 0.83 0.08 0 0

Memo-Painter 0.08 0.835 0.085 0 0

Lei 0 0 0 0.16 0.84

Deoldify 0 0 0 0.135 0.865

HistoryNet 0 0 0 0.14 0.86

Coloriz. Transf. 0 0 0 0.13 0.87

Jeon 0.210526315789474 0.605263157894737 0.157894736842105 0.0263157894736842 0

Dong19 0 0 0.07894736842105260.763157894736842 0.157894736842105

Dong20 0.80 0.15 0.05 0 0

Ours 0.85 0.14 0.01 0 0
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Fig. 10: User study results.

TABLE VI: Average PSNR/SSIM of the ablation study on
Setup1.

CityScapes Sintel SceneFlow
No RSA 45.67/0.984 44.24/0.983 45.29/0.983

No regulation 45.33/0.983 43.35/0.981 44.40/0.982
Only top level 37.12/0.957 36.36/0.952 36.59/0.962

Ours 46.73/0.987 45.82/0.985 46.05/0.985

(a) Input pair of gray and color images.

(b) Attention consistency without regulation. (c) Attention consistency with regulation.

(d) Colorization result without regulation. (e) Colorization result with regulation.

Fig. 11: An example to visualize the consistency of estimated
attention values of pixels across different lines without and
with the U-Net for the regulation. In (b) and (c), blue reflects
small differences (i.e. high consistency) of the estimated
attention values of each pixel in aWb with its neighboring pixel
in the next epipolar line. And red reflects big differences (i.e.
poor consistency).

colorization results of the 16 comparing methods and ours. The
whole set of images during the annotation includes 100 pairs
which are randomly selected from the real monochrome-color
dual-lens dataset. To judge outlier annotators, each annotator
is asked to randomly re-annotate some results and we see the
annotation as an outlier if the score differences are beyond
one score level. The user study results, as shown in Fig. 10,
show that our method gets higher perceptual scores than the
others.

E. Ablation Study

We try different model variants in the proposed method,
so as to evaluate the importance of the key modules of the

proposed method. (1) We remove the RSA blocks and replace
each RSA block with a three-layer CNN, named ‘No RSA’.
(2) We do not perform the regulation via the U-Net in the
SCCA block, named ‘No regulation’. (3) We only perform
the processing at the top pyramid level without performing
the other pyramid levels, named ‘Only top level’. Quantitative
results and some example results are shown in Table VI and
Fig. 9.

The degradation of the colorization quality of ‘No RSA’
verifies that the RSA block is more powerful than traditional
CNN for the feature extraction. The results of ‘No regulation’
are not competing with the proposed method because the
regulation via the U-Net in the SCCA block can encourage
pixels across neighboring lines in the input gray image to
obtain consistent correspondence with pixels of the reference
color image, and thus result in better colorization quality.
In Fig. 11, we also visualize the consistency of estimated
attention values of pixels across different lines without and
with the U-Net for the regulation. For each pixel x1 that
belongs to the slice b1 and its neighboring pixel x2 in the
next line that belongs to the slice b2, we read their attention
values in aWb1 and aWb2 , respectively, calculate the absolute
differences, and average them along the correspondence search
dimension to obtain the visualization value of the pixel x1.
From Fig. 11, the visualized intermediate results also verify
that the regulation by the U-Net can help obtain spatially
consistent correspondence for neighboring pixels. The results
of ‘Only top level’ are much lower than the proposed method.
Because the slice size in the SCCA block is set as 1 × s
and s is much smaller than the image width, only performing
the colorization on the top pyramid level will lead to limited
search range of many pixels in the input gray image for
the corresponding pixels in the reference color image. Since
the corresponding pixels are out of the search range, the
results are inevitably poor. In comparison, because our method
performs the processing with multiple pyramid levels and the
colorization of pixels with large-displacement can be solved
by the other pyramid levels, the proposed pyramid processing
pipeline can achieve high colorization quality.

V. CONCLUSIONS

We propose the spatially consistent transformer to solve the
colorization problem in monochrome-color dual-lens systems.
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(a) Input pair of gray image and color image . (b) Two inputs overlaid. (c) Our result.
Fig. 12: The gray image and color image in the input pair (a) are shot by the monochrome and color cameras, respectively.
The overlaid result (b) (obtained by concatenating Y channel of the input gray image and CbCr channels of the input color
image) has obvious errors because the displacements of pixels between the input pair are not solved. The proposed spatially
consistent transformer gets the colorization result (c) with correct colors. The region marked with the red box is shown in the
second line.

Several regional self-attention (RSA) blocks with U-style con-
nections are used for extracting features of input images. And
we propose the spatially consistent cross-attention (SCCA)
block to exploit the commonly used spatial consistency prop-
erty of neighboring pixels to help obtain spatially consistent
colorization results. A series of SCCA blocks are cascaded
in a pyramid processing way to achieve an efficient and
effective colorization framework. Experimental results show
that the proposed spatially consistent transformer outperforms
the state-of-the-art methods largely.

The limitations of the proposed method are that it can hardly
work for the other kinds of colorization tasks, e.g. reference-
based colorization, scribble-based colorization, etc., where the
reference color image cannot provide plenty of useful color
clues for the pixels of the input gray image in every epipolar
line.
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