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Abstract—Colorization in monochrome-color camera systems
aims to colorize the gray image IG from the monochrome camera
using the color image RC from the color camera as reference.
Since monochrome cameras have better imaging quality than
color cameras, the colorization can help obtain higher quality
color images. Related learning based methods usually simulate
the monochrome-color camera systems to generate the synthe-
sized data for training, due to the lack of ground-truth color
information of the gray image in the real data. However, the
methods that are trained relying on the synthesized data may get
poor results when colorizing real data, because the synthesized
data may deviate from the real data. We present a self-supervised
CNN model, named Cycle CNN, which can directly use the
real data from monochrome-color camera systems for training.
In detail, we use the Weighted Average Colorization (WAC)
network to do the colorization twice. First, we colorize IG using
RC as reference to obtain the first-time colorization result IC.
Second, we colorize the de-colored map of RC, i.e. RG, using the
concatenated image of IG and Cb/Cr channels of the first-time
colorization result IC, i.e. ICb

C and ICr
C , as reference to obtain the

second-time colorization result R
′
C. In this way, for the second-

time colorization result R
′
C, we use the Cb and Cr channels of

the original color map RC as ground-truth and introduce the
cycle consistency loss to push R

′Cb/Cr
C ≈ R

Cb/Cr
C . Also, for the

Y channel of the first-time colorization result IYC, we propose
the Global Curve Adjustment (GCA) network and the structure
similarity loss to encourage the structure similarity between IYC
and IG. In addition, we introduce a spatial smoothness loss
within the WAC network to encourage spatial smoothness of the
colorization result. Combining all these losses, we could train the
Cycle CNN using the real data in the absence of the ground-truth
color information of IG. Experimental results show that we can
outperform related methods largely for colorizing real data.

Index Terms—Weighted Average Colorization, Global Curve
Adjustment, Cycle Consistency, Structure Similarity, Spatial
Smoothness.

I. INTRODUCTION

With the increasing use of monochrome-color multi-lens
camera systems in high-end smart phones, e.g. Huawei P30,
Mate30, etc., the colorization problem within these systems
is attracting more and more attentions from the academic and
industrial communities.

As shown in Fig. 1, colorization in monochrome-color
camera systems aims to colorize the gray image IG from
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(a) Input pair of gray image IG and color image RC. (b) Our colorization result I∗C.

Fig. 1. The gray image IG and color image RC in the input pair are shot by
the monochrome and color cameras, respectively. By directly using these real
data for training, our algorithm learns to colorize IG using RC as reference.

the monochrome camera using the color image RC from
the color camera as reference. Between the monochrome and
color cameras, there exist different hardwares, e.g. the color
filter array, and different software modules, e.g. white balance,
demosaic, etc. As a result, on the one hand, the monochrome
camera has better light efficiency [1], [2] than the color
camera, and thus the gray image IG has higher quality, i.e.
signal-noise ratio, than the color image RC. This motivates
researchers to do the colorization so as to get higher quality
color images using the monochrome-color camera systems. On
the other hand, the pair of gray and color images have different
luminance, blur, noises, etc., which bring difficulties for the
colorization.

Among existing methods for colorization within the
monochrome-color camera system, some are traditional hand-
crafted methods, e.g. [1]. With the successful use of deep
learning in various computer vision problems, some deep
learning based methods, e.g. [2] are proposed recently, which
have shown to be able to obtain higher accuracy than the
traditional ones. However, in the deep learning methods, e.g.
[2], the models usually need ground-truth color information
of the input gray images for training. Due to the lack of
ground-truth color information in the real data, as shown
in Fig. 2, current methods, e.g. [1], [2], synthesize data to
simulate the real data from the monochrome-color camera
system. However, the degradation models for synthesizing the
data may deviate from the ones in real imaging systems within
the monochrome and color cameras. Thus, the synthesized
data could hardly simulate the real data perfectly. As a result,
the deep learning methods, which are trained relying on the
synthesized data, may have very poor results when colorizing
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Fig. 2. How the synthesized data and the real data are obtained. The real
data are the pair of gray and color images shot from the monochrome-color
camera system. The synthesized data are the pair of gray and color images
that are synthesized using a pair of color images from the dual-color camera
system.

the real data.
To overcome this limitation, in this paper, we propose a self-

supervised colorization model and aim to directly use the real
data from the monochrome-color camera system for training.

Our insight is based on the property of cycle colorization
consistency. As shown in Fig. 3, when we do the colorization
twice, i.e. firstly colorizing IG using RC as reference and
secondly colorizing the gray map of RC, i.e. RG, using
the obtained first-time colorization result IC as reference, the
second-time colorization result R

′

C should arrive back at RC.
Thus, to train the colorization model, we can use RC as the
ground-truth for R

′

C, and IG as the ground-truth for the Y
channel of IC, i.e. IYC. In this way, the training data are from
the real data shot by the monochrome-color camera system
and we do not need any synthesized data at all.

Input gray image IG

Input color imageRC

Colorization result IC

’s de-colored mapRGRC

(IG ,RC )→ IC

(RG ,IC )→ RC

Fig. 3. The insight of cycle colorization consistency. When doing the col-
orization twice, i.e. firstly (IG,RC)→ IC and secondly (RG, IC)→ R

′
C,

the second-time colorization result R
′
C should arrive back at RC.

Based on this insight, we propose a self-supervised CNN
model, named Cycle CNN. As shown in Fig. 4, we propose
a Weighted Average Colorization (WAC) network to do the
colorization twice, i.e. firstly colorizing IG using RC as
reference and secondly colorizing RG using the concatenated
image of IG and Cb/Cr channels of the first-time colorization
result IC, i.e. ICb

C and ICr
C , as reference. We do horizontal flips

for the inputs and outputs of the second-time colorization so
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Fig. 4. The overall structure of our Cycle CNN model.

as to enable the WAC network to perform the second-time
colorization without changing any model structure.

We design three losses, namely the structure similarity loss,
the cycle consistency loss and the spatial smoothness loss,
for training the proposed Cycle CNN model, as shown in
Fig. 4. First, the structure similarity loss aims to measure
the structure similarity between IYC and IG. Due to different
exposure settings, e.g. shutter speed, ISO, etc., and camera
response functions (CRFs) [3] between the monochrome cam-
era and the color camera, the corresponding pixels between
IYC (which is from RC that is shot by the color camera) and
IG (which is shot by the monochrome camera) usually have
different luminance. And the structure similarity loss should
avoid the affects of the luminance differences. The luminance
differences caused by different exposure and CRFs can be
adjusted by a global curve, which is widely used in High
Dynamic Range imaging [3]. So, to overcome this challenge,
we propose the Global Curve Adjustment (GCA) network
which estimates a global adjustment curve T and uses it to
perform global curve adjustment for IYC to get ÎYC, so that the
luminance differences between ÎYC and IG caused by different
exposure and CRFs are minimized. Then, we use the difference
between ÎYC and IG as the structure similarity loss between
IYC and IG. Second, the cycle consistency loss is designed
to encourage the similarity of the Cb and Cr channel maps
between R

′

C and RC. Last, the spatial smoothness loss aims to
encourage the spatial smoothness of the colorization result. We
also use a refinement CNN to refine the Cb and Cr channels
of IC, i.e. ICb

C and ICr
C , with IG as guidance to get the refined

Cb and Cr channels I∗Cb
C and I∗Cr

C and concatenate IG, I∗Cb
C

and I∗Cr
C to get the final result I∗C.

Experimental results show that we can outperform related
methods largely for the real data from the monochrome-color
camera system.
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Our main contributions include 1) the self-supervised Cy-
cle CNN which can be trained using real data from the
monochrome-color camera systems without any human anno-
tation, 2) the GCA network and the new structure similarity
loss for measuring the quality of the first-time colorization
result, and 3) the combination of the newly proposed modules
with the modules from our previous work in [4], including
the WAC network, the cycle consistency loss for measuring
the second-time colorization result, and the spatial smoothness
loss for spatial smoothness of the colorization result.

Our framework is an extension of our previous work in
[4]. In comparison with [4], the differences and improvements
are as follows: 1) To measure the quality of the first-time
colorization result, the previous work in [4] builds a dataset
by image registration, manually selecting and cropping well-
registered regions and random warping, and pre-trains the
structure similarity loss based on the dataset. It has two
limitations. First, when using a new monochrome-color camera
system, the dataset has to be re-built again and the pre-trained
loss has to be re-trained as well. This increases complexity
and human labor a lot. Second, the pre-trained loss may not be
accurate for practical data because the training samples in the
dataset may deviate from the practical samples. To overcome
these limitations, in this paper, we propose the GCA network
and the new structure similarity loss to make the whole Cycle-
CNN an end-to-end and self-supervised framework. 2) We
provide more quantitative and qualitative experimental results
in comparison with the state-of-the-art algorithms and we also
provide more ablation study results in this paper.

II. RELATED WORKS

The existing colorization tasks can be divided into five
kinds, i.e. automatic colorization, text-based colorization,
scribble-based colorization, reference-based colorization, and
monochrome-color dual-lens colorization.

In automatic colorization, the input is only a single gray
image and the algorithms need to automatically colorize it
without any reference. Recent deep learning based methods,
e.g. [5], [6], [7], [8], [9], and [10], make great progress to
solve this problem. However, these methods are not proper
for our problem because they fail to make use of the color
image from the color camera, which contains much useful
color information for colorizing the gray image from the
monochrome camera.

In text-based colorization, Bahng et al. [11] introduce a
manually curated dataset, called Palette-and-Text (PAT), and
propose the Text2Colors model which consists of two condi-
tional generative adversarial networks (GANs), i.e. the text-
to-palette generation network to capture the semantics of the
text input and produce relevant color palettes and the palette-
based colorization network to colorize a grayscale image using
the generated color palette. Manjunatha et al. [12] propose a
language-conditioned colorization method which allows end
users to manipulate the process of image colorization by
feeding in different captions. Kim et al. [13] propose a GAN
based line art colorization method which takes as input a
grayscale line art and color tag information and produces the

colorization result. These methods are not suitable for our
problem because the text information is not available in the
monochrome-color camera system.

In the scribble-based colorization task, the input includes
a single gray image and several color scribbles which are
drawn by humans. And the methods, e.g. [14] and [15], use
the color scribbles as guidance to propagate the colors to the
whole image. These methods are not suitable for our problem
because there exist no scribbles in the monochrome-color
camera system.

In the reference-based colorization task, the input includes
an input gray image and a reference color image. Different
from our problem, the reference image is shot in different
locations and/or at different time and the contents within
the pair of images just share similar semantics. Because the
inputs are different from ours, the methods, e.g. [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], usually firstly
search semantically similar pixels between the images and then
propagate the colors of the matching pixels to the whole image.
Welsh et al. [16] assume that pixels with the same grayscale
intensity will have the same color, and use the luminance
value as the feature to search for matching pixels. Ironi et al.
[17] use discrete cosine transform coefficients as the feature
to search sparse matching pixels, copy the color of matching
pixels for pixels in high confidence regions and then colorize
pixels in low confidence regions by color propagation [15].
Gupta et al. [18] extract features of superpixels by averaging
feature values of all pixels among each superpixel, search for
matching pixels by feature matching and use space voting for
spatial consistency. Furusawa et al. [19] propose a reference-
based colorization algorithm for colorizing manga images.
The assumption for manga images are not always correct
for general images. Thus, their results are not always good
enough for solving our problem. He et al. [21], [22], Zhang
et al. [26], Xu et al. [23] and Lu et al. [24] propose deep
learning based algorithms for image and video colorization.
But, they usually assume the pair of images are visually very
different but semantically similar. Due to different assumptions
from our problem, they do not consider locality and spatial
smoothness and the proposed methods usually minimize the
semantic differences. Due to different assumptions and goals,
their results are not always faithful to the correct colors. Lee
et al. [25] make use of internal attention mechanism and
dense semantic correspondence to propose a reference-based
colorization algorithm for sketch images. But the results are
poor for our problem because the sketch images are much
different from monochrome images and the combination of the
similarity loss, perceptual loss, style loss, and adversarial loss
is not proper for the monochrome-color dual-lens colorization
task. In addition, the existing learning-based methods for
reference-based colorization are supervised methods, while in
the colorization problem for real monochrome-color camera
systems, there are no annotation data for the supervised
methods to train or fine-tune.

The monochrome-color dual-lens colorization task can be
seen as a special case of reference-based colorization. Jeon et
al. [1] propose a stereo matching method to search for best-
matching pixels, and correct colors in occlusion regions by
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applying spatial consistency of neighboring pixels over the
whole image. But the accuracy for the stereo matching is
not high all the time, especially in occlusion regions, and
the wrongly estimated correspondences will lead to wrong
colorization results. Dong et al. [2], [27] proposed a deep CNN
for solving this problem and make use of the cycle consistency
property to propose the colorization quality assessment module
for the colorization results. However, they are still traditional
supervised methods and rely on synthesized data to train the
model. As discussed in the Introduction Section, the real
data are quite different from the synthesized data, and their
performance on the real data decreases largely.

Like sparseness, smoothness, etc., cycle consistency is also a
marvelous and general property and can be utilized for solving
different vision problems, e.g. image translation [28], visual
tracking [29], super resolution [30], image quality assessment
[27], etc. In this paper, we make use of it for solving the self-
supervised colorization problem towards real monochrome-
color camera systems.

III. METHOD

A. Overview

As shown in Fig. 4, our Cycle-CNN framework does the
colorization using the Weighted Average Colorization (WAC)
network twice. In the first-time colorization, we colorize
the input gray image IG ∈ Rh×w using the color image
RC ∈ Rh×w×3 as reference, where h and w denote the
height and width of the image, respectively. After getting the
first-time colorization result IC ∈ Rh×w×3, in the second-
time colorization, we do horizontal flipping for the de-colored
image of RC, named RG ∈ Rh×w, and the concatenated
image of IG, ICb

C and ICr
C and then feed the flipped images

into the WAC network. The result is then flipped again to
get the second-time colorization result R

′

C ∈ Rh×w×3. We
do the three flip operations because the WAC network always
searches colors of pixels in the range of (j, i) to (j, i+ d− 1)
in the reference image for each pixel (j, i) in the input gray
image, and, in the second-time colorization, the corresponding
pixels in the concatenated image of (IG, I

Cb
C , ICr

C ) locate in
the opposite search range, i.e. from (j, i) to (j, i − d + 1).
By doing the flip operations, we can enable the WAC network
to perform the second-time colorization without changing any
model structure.

For the first-time colorization result, we design the structure
similarity loss to encourage the structure similarity between
the Y channel of IC, i.e. IYC ∈ Rh×w, and IG. Due to the
luminance differences of the corresponding pixels between
IYC and IG which is caused by different exposure settings
and camera response functions (CRFs) of the monochrome
and color cameras, we propose the Global Curve Adjustment
(GCA) network. As shown in Fig. 5 ,first, we use IYC, IG and
the relative position map PI to estimate the confidence map
M, i.e. how much each pixel contributes to the estimation
of the global curve T . Second, we use IYC, IG and M to
estimate the global curve T . Third, we use the estimated
global curve T to adjust IYC to get ÎYC ∈ Rh×w so that the
luminance differences between ÎYC and IG are minimized. And
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Fig. 5. The structure of our GCA network.

the difference between ÎYC and IG is then calculated and used
as the structure similarity loss between IYC and IG.

For the second-time colorization result, we design the cycle
consistency loss to encourage the similarity of the Cb/Cr
maps between the second-time colorization result R

′

C and
the reference color image RC. The spatial smoothness loss
is also designed to encourage the spatial smoothness of the
colorization result.

We also use the refinement CNN to refine the Cb and Cr
channels of the first-time colorization result IC, i.e. ICb

C and
ICr
C , with IG as guidance to get the refined Cb and Cr channels
I∗Cb
C and I∗Cr

C and concatenate IG, I∗Cb
C and I∗Cr

C to get the
final result I∗C.

The training data are the real data captured from
monochrome-color camera systems, as shown in Fig. 2. And
the whole self-supervised system does not need any extra
synthesized data at all.

B. WAC Network

Within the WAC network, the input is the pair of gray and
reference color images AG ∈ Rh×w and BC ∈ Rh×w×3,
and the output is the colorization result AC ∈ Rh×w×3,
as shown in Fig. 6. First, we extract the deep features of
the input images, i.e. FA and FB. Next, FA and FB are
used for building the 4-D feature volume VF with the search
range d. VF is then fed into the 3-D U-Net to learn the 3-
D weight volume VW ∈ Rh×w×d. And, for each pixel (j, i),
the colorization result AC is obtained by the weighted average
operation between VW and BC, i.e.

Ac
C(j, i) =

d−1∑
k=0

VW(j, i, k)Bc
C(j, i+ k), (1)

where c ∈ {Y,Cb, Cr}, and the search range d of candidate
pixels for each pixel (j, i) is defined as the pixels with the
same vertical position, i.e. j, and the horizontal positions range
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from i to i + d − 1, where the hyper-parameter d controls
the maximum disparity. The search range is within the same
line because the dual-lens of phones are calibrated and the
corresponding pixels should be in the same line but different
columns due to disparity. Pixels in the defined range have high
probability to provide correct colors. VW(j, i, k) is the weight
values between pixel (j, i) of the input gray image and pixel
(j, i+ k) of the reference image, and the weight volume VW

contains the weight values of all pixels and their candidate
pixels.

3D 
U-Net

Concatenated 4-D 
feature volume

3-D weight 
volume

Weighted 
average

AC

AG

ResNet

BC

BC
Y

FA

FB

VF VW

Fig. 6. The WAC network that colorize the given input gray image AG using
the input color image BC as reference to obtain the colorization result AC.

C. GCA Network
As shown in Fig. 5, for the given pair of image IYC and

IG, our goal is to estimate the global curve T , and use it to
perform global curve adjustment for IYC to get the adjustment
result ÎYC by

ÎYC(j, i) = T (IYC(j, i)), (2)

so that the luminance difference between ÎYC and IG that are
caused by different exposure and CRFs is minimized.

A global curve T ideally contains 256 nodes in the dynamic
range of [0, 255]. However, estimating all the 256 nodes will
lead to heavy costs on the GPU memory. So we choose to
estimate S sparse nodes with the stride of s. In this paper,
we set S = 64 and thus s = 4. The input intensity of the
sparse nodes is xm, where x1 to xS are [0, 4, 8, 12, ..., 252],
and the corresponding output intensity is ym. An example of
the estimated global curve T is shown in Fig. 5. Thus, for any
given input intensity x, we estimate the corresponding output
intensity T (x) using the global curve T with sparse nodes by

T (x) =

S∑
m=1

DT (x, xm)ym

S∑
m=1

DT (x, xm)

, (3)

where DT (x, xm) measures the Gaussian distance between
any given input intensity x and the input intensity of each
sparse node xm. We define DT (x, xm) as

DT (x, xm) = e−
(x−xm)2

2σ2 , (4)

where σ is set to 5 in this paper.
For the given pair of image IYC and IG, estimating the

corresponding global curve T equals to estimating the output
intensity ym of xm at each node. And we estimate ym by the
weighted average over all pixels of IG, i.e.

ym =

∑
j,i

WGCA(j, i,m)IG(j, i)∑
j,i

WGCA(j, i,m)
. (5)

The GCA weight values of pixel (j, i) at node m, i.e.
WGCA(j, i,m), is defined as

WGCA(j, i,m) = DT (IYC(j, i), xm)M(j, i), (6)

where DT (IYC(j, i), xm) measures the Gaussian distance be-
tween the intensity IYC(j, i) and the input intensity at node m,
i.e. xm, and M(j, i) is the learned confidence value between
IYC and IG at pixel (j, i), which shows how much pixel (j, i)
contributes to the estimation of the global curve T . To learn
the confidence map M, we use IYC, IG and the relative position
map PI ∈ Rh×w×2 as the inputs. The relative position map PI

consists of the distance to the image boundary at the vertical
direction and the horizontal direction of each pixel (j, i), i.e.

PI(j, i, 1) = min(j, h− 1− j), (7)

and
PI(j, i, 2) = min(i, w − 1− i). (8)

IYC, IG and PI are concatenated and fed into a ResNet to learn
M. The GCA weight values WGCA share some insights with
the bilateral filter [31]. DT (IYC(j, i), xm) only considers the
intensity differences like the range filtering within the bilateral
filter, and M(j, i) considers the factor of positions like the
domain filtering within the bilateral filter.

D. Structure similarity loss

To encourage the structure similarity between IYC and IG,
the structure similarity loss measures the differences between
ÎYC and IG with SSIM as the metric, i.e.

Lstructure = 1− SSIM (̂IYC, IG), (9)

E. Cycle consistency loss

To encourage the similarity of the Cb and Cr color chan-
nels between the second-time colorization result R

′

C and the
reference color image RC, we propose the cycle consistency
loss to measure the differences between the Cb and Cr color
channels of R

′

C and RC. We use SSIM as the metric, i.e.

Lcycle = 1− 1

2
(SSIM(R

′Cb
C ,RCb

C ) + SSIM(R
′Cr
C ,RCr

C )),

(10)

F. Spatial smoothness loss

We introduce the spatial smoothness loss to encourage
spatial smoothness of the 3-D weight volume VW in the WAC
network so as to obtain spatial smooth colorization result.
We assume that in the vertical and horizontal dimensions,
neighboring pixels should have similar weights, so the loss
is defined as

Lsmooth =

∑
(j,i,k)

∑
(j′,i′)∈Ω(j,i)

|VW(j, i, k)−VW(j′, i′, k)|

N
,

(11)
where Ω is the 4-neighboring pixels in the vertical and
horizontal dimensions, and N =

∑
(j,i,k)

∑
(j′,i′)∈Ω(j,i)

1.
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TABLE I
SUMMARY OF OUR CYCLE CNN ARCHITECTURE. EACH 2-D OR 3-D
CONVOLUTIONAL LAYER REPRESENTS A BLOCK OF CONVOLUTION,

BATCH NORMALIZATION AND RELU (UNLESS OTHERWISE SPECIFIED).

Layer Description Output Tensor Dim.
ResNet in the WAC network

1 5× 5 conv, n feat. h× w × n
2 3× 3 conv, n feat. h× w × n
3 3× 3 conv, n feat. h× w × n

residue connection (add layer 1 and 3 feat.) h× w × n
4-17 (repeat layers 2,3 and residual connection)×7 h× w × n

ResNet in the GCA network
1 5× 5 conv, n feat. h× w × n
2 3× 3 conv, n feat. h× w × n
3 3× 3 conv, n feat. h× w × n

residue connection (add layer 1 and 3 feat.) h× w × n
4-17 (repeat layers 2,3 and residual connection)×7 h× w × n
18 3× 3 conv, 1 feat., Activation: Sigmoid h× w

ResNet1 in the refinement network
1 5× 5 conv, n feat. h× w × n
2 3× 3 conv, n feat. h× w × n
3 3× 3 conv, n feat. h× w × n

residue connection (add layer 1 and 3 feat.) h× w × n
4-17 (repeat layers 2,3 and residual connection)×7 h× w × n
18 3× 3 conv, 1 feat. h× w

ResNet2 in the refinement network
1 5× 5 conv, n feat. h× w × n
2 3× 3 conv, n feat. h× w × n
3 3× 3 conv, n feat. h× w × n

residue connection (add layer 1 and 3 feat.) h× w × n
4-17 (repeat layers 2,3 and residual connection)×7 h× w × n
18 3× 3 conv, 1 feat., no ReLu h× w

3-D U-Net in the WAC network
1 3-D conv, 3× 3× 3, n feat. h× w × d× n
2 3-D conv, 3× 3× 3, n feat. h× w × d× n

3 3-D conv, 3× 3× 3, 2n feat., stride 2 h
2 ×

w
2 ×

d
2 × 2n

4 3-D conv, 3× 3× 3, 2n feat. h
2 ×

w
2 ×

d
2 × 2n

5 3-D conv, 3× 3× 3, 2n feat. h
2 ×

w
2 ×

d
2 × 2n

6-14 (repeat layer 3, 4, 5)×3 h
16 ×

w
16 ×

d
16 × 2n

15 3× 3× 3, 3-D trans conv, 2n feat., stride 2 h
8 ×

w
8 ×

d
8 × 2n

residual connection (add layer 15 and 11) h
8 ×

w
8 ×

d
8 × 2n

16 3× 3× 3, 3-D trans conv, 2n feat., stride 2 h
4 ×

w
4 ×

d
4 × 2n

residual connection (add layer 16 and 8) h
4 ×

w
4 ×

d
4 × 2n

17 3× 3× 3, 3-D trans conv, 2n feat., stride 2 h
2 ×

w
2 ×

d
2 × 2n

residual connection (add layer 17 and 5) h
2 ×

w
2 ×

d
2 × 2n

18 3× 3× 3, 3-D trans conv, n feat., stride 2 h× w × d× n
residual connection (add layer 18 and 2) h× w × d× n

19 3× 3× 3, 3-D trans conv, 1 feat. h× w × d
20 Softmax h× w × d

G. Full objective

Combining all above losses, the overall objective we aim to
optimize is:

L = λ1Lstructure + λ2Lcycle + λ3Lsmooth, (12)

where λ1, λ2, and λ3 control the relative importance of the
corresponding terms respectively. The values are set as λ1 = 1,
λ2 = 1, and λ3 = 0.1 in this paper. With the guidance of
these losses, we successfully learn the Cycle-CNN without
any synthesized data for training.

ResNet1
Concat ResNet2

IC
Cb/Cr

IC
*Cb/Cr

IG

Fig. 7. The refinement CNN that refines the Cb and Cr channels of the
colorization result IC using the input gray image IG as guidance to obtain
the refined result I∗Cb/Cr

C .

H. Color refinement

The Cb and Cr color channels of the first-time colorization
result IC may have errors in occlusion regions. To correct
these errors, we use the input gray image IG as guidance to
refine the Cb and Cr color channels of the colorization result
IC. We follow [2] to build the network. As shown in Fig.
7, the input gray image IG is fed into a ResNet to get its
feature. The extracted feature and I

Cb/Cr
C are concatenated

and then fed into another ResNet to get the residue color
map Φ(I

Cb/Cr
C , IG). By adding I

Cb/Cr
C and Φ(I

Cb/Cr
C , IG),

the refined Cb and Cr color channels, i.e. I∗Cb
C and I∗Cr

C ,
are obtained. And we concatenate IG, I∗Cb

C and I∗Cr
C to get

the final result I∗C.To train this model, we use the second-time
colorization results R

′

C as inputs and the Cb and Cr channels
of the original input color image RC as ground-truth, and we
use SSIM as the loss function for training.

I. Network architecture

We use ResNet as the backbone for our model. As shown in
Fig. 6, 5, and 7, we use 4 ResNets in total in the WAC network,
GCA network, and the refinement network. The detailed layer
description is shown in Table I. They have similar structures.
The first layer is with 5×5 kernel, followed by 7 residue blocks
with 3 × 3 kernel and a residue connection. The last layers
of the 4 ResNets are different for different goals. BatchNorm
layers and ReLu layers are added after each convolution layer.
The filter number n of the ResNet is a hyper-parameter, which
is set as 16 in this paper.

We follow [32] to use the 3-D U-Net for the 3-D regulation
in the WAC network. The layer description of the 3-D U-Net
is also shown in Table I.

IV. EXPERIMENTAL RESULTS

A. Dataset

We use one monochrome camera and one color camera to
shoot 1000 pairs of gray and color images to build the dataset,
named Real Dataset. The monochrome and color cameras
are rectified using the method of [34]. The cameras are the
monochrome and color versions of the same camera, i.e. the
MVCAM-SU1000C camera.

B. Implementation details

The proposed deep convolutional network is implemented
with Tensorflow. All models are optimized with RMSProp and
a constant learning rate of 0.001. We train with a batch size
of 1 using a 256× 512 randomly located crop from the input
images. The images of the dataset is randomly divided into
the training set, which contains 700 pairs of images, and the
testing set, which contains 300 pairs of images. All the models
are run on a server with an Intel I7 CPU and 4 NVIDIA Titan-
X GPUs. The training time is about 23 hours and the testing
time is shown in Table III.
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(a) Input gray and color images. (b) Xu et al. (c) Lu et al. (d) Lee et al.

(e) Furusawa et al. (f) He et al. 2018 (g) He et al. 2019 (h) Zhao et al. (i) Su et al.

(j) Yoo et al. (k) Xiao et al. (l) Jeon et al. (m) Dong et al. (n) Ours

(a) Input gray and color images. (b) Xu et al. (c) Lu et al. (d) Lee et al.

(e) Furusawa et al. (f) He et al. 2018 (g) He et al. 2019 (h) Zhao et al. (i) Su et al.

(j) Yoo et al. (k) Xiao et al. (l) Jeon et al. (m) Dong et al. (n) Ours

Fig. 8. Examples to compare the colorization results of all the comparison methods with ours.
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(a) Input gray and color images. (b) Xu et al. (c) Lu et al. (d) Lee et al.

(e) Furusawa et al. (f) He et al. 2018 (g) He et al. 2019 (h) Zhao et al. (i) Su et al.

(j) Yoo et al. (k) Xiao et al. (l) Jeon et al. (m) Dong et al. (n) Ours

(a) Input gray and color images. (b) Xu et al. (c) Lu et al. (d) Lee et al.

(e) Furusawa et al. (f) He et al. 2018 (g) He et al. 2019 (h) Zhao et al. (i) Su et al.

(j) Yoo et al. (k) Xiao et al. (l) Jeon et al. (m) Dong et al. (n) Ours

Fig. 9. Examples to compare the colorization results of all the comparison methods with ours.

C. Comparison algorithms:

We compare with state-of-the-art reference-based coloriza-
tion algorithms, i.e. the methods of Xu et al. [23], Lu et al.
[24], Lee et al. [25], Furusawa et al. [19], He et al. 2018
[21], and He et al. 2019 [22], deep learning based automatic
colorization algorithms, i.e. the methods of Zhao et al. [7], Su
et al. [8], Yoo et al. [9] and Xiao et al. [10] and state-of-the-art
monochrome-color dual-lens colorization algorithms, i.e. the
methods of Jeon et al. [1] and Dong et al. [27].

For fair comparison, the automatic colorization methods
are fine-tuned on the Real Dataset by using the color images
as the ground-truth and their de-colored results as the input
gray images. The learning based reference-based methods and
monochrome-color colorization methods are all supervised
methods and the Real Dataset cannot provide training data for
their training or fine-tuning, because the ground-truth Cb and
Cr values of the input monochrome image are not available in

the Real Dataset. So we use one of the synthesized dataset,
i.e. the SceneFlow Dataset, to fine-tune them in a cycle way,
i.e. train them with the first-time colorization and second-time
colorization alternatively in different training epochs. The non-
learning based method, e.g. Jeon et al., does not need training,
so we directly perform it for our problem.

D. Comparison with other colorization methods on Real
Dataset

The qualitative results are shown in Figs. 8, 9 and 10.
As shown, our method has better results than the comparison
methods.

The colorization qualities of the state-of-the-art CNN-based
automatic colorization methods, including Zhao et al. [7], Su
et al. [8], Yoo et al. [9] and Xiao et al. [10], are worse than
most of the reference-based methods and ours, especially in
regions with colorful details and textures. It is because they are
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(a) Input gray and color images. (b) Xu et al. (c) Lu et al. (d) Lee et al.

(e) Furusawa et al. (f) He et al. 2018 (g) He et al. 2019 (h) Zhao et al. (i) Su et al.

(j) Yoo et al. (k) Xiao et al. (l) Jeon et al. (m) Dong et al. (n) Ours

(a) Input gray and color images. (b) Xu et al. (c) Lu et al. (d) Lee et al.

(e) Furusawa et al. (f) He et al. 2018 (g) He et al. 2019 (h) Zhao et al. (i) Su et al.

(j) Yoo et al. (k) Xiao et al. (l) Jeon et al. (m) Dong et al. (n) Ours

Fig. 10. Examples to compare the colorization results of all the comparison methods with ours.
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(a) Input gray and color images. (b) No Lcycle.

(c) No Lsmooth. (d) No Lstructure. (e) Only Cb/Cr channels in WAC. (f) Ours.

(a) Input gray and color images. (b) No Lcycle.

(c) No Lsmooth. (d) No Lstructure. (e) Only Cb/Cr channels in WAC. (f) Ours.

Fig. 11. Example results in the ablation study about the three losses, i.e. the structure similarity loss Lstructure, the cycle consistency loss Lcycle, and the
spatial smoothness loss Lsmooth, and the WAC network without inferring Y channel.

solving different problems. The input in these methods is only
one single gray image. The reference color image, which could
provide much useful color information during the colorization,
is not utilized at all.

The state-of-the-art reference-based colorization methods,
i.e. Xu et al. [23], Lu et al. [24], Lee et al. [25], Furusawa
et al. [19], He et al. 2018 [21], and He et al. 2019 [22], and
monochrome-color dual-lens colorization algorithms, i.e. Jeon
et al. [1] and Dong et al. [27], are all supervised methods
and the models cannot be trained or fine-tuned on the real
data from monochrome-color dual-lens systems. Because the
pixels between the pair of gray and color images of the real
data usually have different luminance and the distortions are
complicated and blind, the differences make the colorization
challenging and the comparison methods usually fail to gen-
erate good results in all regions within the images.

In detail, the method of Xu et al. [23] proposes a two-
step coarse-to-fine architecture to firstly obtain a coarse result
by matching basic feature statistics and secondly refine the
coarse result to generate the final result, but, due to the lack
of accurate confidence estimation of wrongly colorized pixels,
the wrongly colorized regions of the coarse result may pollute
the neighboring regions during the second step, leading to

errors of the final colorization results. The method of Lu et
al. [24] makes use of the prior knowledge of colors contained
in the training data to fuse the semantic colors and global
color distribution from the reference image to generate the
final color images. However, while the basic colors are correct
with the help of the prior knowledge and semantics of objects,
the colors of details and textures can be hardly accurate. Lee
et al. [25] propose a sketch based colorization method, but
their results are poor for the real data from monochrome-color
dual-lens systems. It is because the assumptions of the input
images are quite different and the combination of specially-
designed modules for sketch images, e.g. the outline extractor,
the augmented-self reference generation, the feature transfer
module, etc., is not a proper choice for our problem. The
result of Furusawa et al. [19] is not good enough because
the method assumes that the images are manga images but in
our problem the images are general images. He et al.’s results,
including [21], [22], could not achieve high accuracy. They
are designed under the assumption that the pair of images
are visually very different but semantically similar. Due to
different assumptions from our problem, they do not consider
locality and spatial smoothness of the correspondence. This
causes many inconsistent correspondence matches, which will



11

(a) Input gray and color images. (b) Result of [4]. (c) No GCA.

(d) GCA without relative position. (e) GCA without confidence map. (f) Color transfer [33] instead of GCA. (g) Ours. .

(a) Input gray and color images. (b) Result of [4]. (c) No GCA.

(d) GCA without relative position. (e) GCA without confidence map. (f) Color transfer [33] instead of GCA. (g) Ours. .

Fig. 12. Example results in the ablation study about the GCA network.

cause wrong colorization. In addition, the perceptual loss
minimizes the semantic differences of unnatural colorization.
The result looks natural but is not always faithful to the ground
truth colors, e.g. some small regions have different colors from
neighboring regions, but they are wrongly colorized to have
similar colors with neighboring regions. Jeon et al.’s method
[1] has better results than the other comparison methods.
Although they are designed for monochrome-color system and
the features are robust to luminance variance and distortions,
the hand-crafted pipelines are not competing with our deep
learning based model. Dong et al. [27] have poor results
because they are trained on synthesized data. Among the
synthesized data, the pixels between the pair of gray and color
images always have the same luminance and the distortions,
e.g. blur and noise, are manually added. On the contrary, in
the real data, the pixels between the pair of gray and color
images usually have different luminance and the distortions
are complicated and blind. Due to different characteristics of
data in the synthesized and real datasets, Dong et al. have poor
results for real data in some cases.

A user study is also performed. There are 30 annotators
in total. The annotation choices include five score level, i.e.
‘Perfect’, ‘Few Errors’, ‘Partly Wrong’, ‘Mostly Wrong’, and

TABLE II
AVERAGE PSNR (DB) AND SSIM VALUES OF THE SECOND-TIME

COLORIZATION RESULTS OF DIFFERENT COLORIZATION METHODS ON THE
REAL DATASET.

PSNR SSIM
Xu 32.41 0.8961
Lu 33.67 0.9135
Lee 23.62 0.8225

Furusawa 25.53 0.8521
He18 33.68 0.8986
He19 34.02 0.9042
Zhao 33.28 0.9106
Su 34.12 0.9204

Yoo 35.80 0.9193
Xiao 27.99 0.8455
Jeon 34.44 0.9067
Dong 31.25 0.8741
Ours 42.99 0.9707

‘Totally Wrong’. The annotators are asked to annotate every
colorization result of the 12 comparing methods and ours.
The whole set of images in the user study are 100 pairs
that are randomly selected from our Real Dataset. And each
annotator annotates 1300 colorization results in total. To avoid
outlier annotation, we will let each annotator randomly re-
annotate some results and see the annotations as outlier if the
annotation differences are beyond one score level. The results
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0%

25%

50%

75%

100%

Xu Lu Lee Furusawa He18 He19 Zhao Su Yoo Xiao Jeon Dong Ours

Perfect Few Errors Partly Wrong Mostly Wrong Totally Wrong

Fig. 13. User study results.

are shown in Fig. 13. This shows we can get ‘Perfect’ and
‘Few Errors’ scores in most cases and our method gets much
higher perceptual scores than the others.

Quantitative evaluation is also performed by evaluat-
ing the PSNR and SSIM values between the second-time
colorization results and the input color image. Due to the
lack of ground-truth color information of input gray images,
we cannot perform quantitative evaluation for the first-time
colorization results. But, according to the cycle consistency
property, the second-time colorization results can still reflect
the colorization quality to some extend. So we use all the
methods to do the colorization twice. The results are in
Table II, which show that we outperform largely than the
other methods. The processing time of different methods are
shown in Table III. This shows that, while increasing the
colorization accuracy largely, our method does not increase
the computational complexity a lot.

E. Comparison with other colorization methods on Synthe-
sized Dataset

Due to the importance of quantitative evaluation, we per-
form our method on the traditional synthesized dataset of
[2], [1]. The datasets include Cityscapes [35], Middlebury
[36], Sintel [37], and SceneFlow [38]. We use all the com-
paring methods and ours to do the colorization twice, and
the quantitative results are shown in Table IV and V. As
shown, on the four synthesized datasets, without using the
annotated ground-truth Cb and Cr channel values of the first-
time colorization results, the proposed self-supervised method
achieves comparable results in comparison with the supervised
method [27] which is specifically designed for the synthesized
datasets and relies on the annotated ground-truth Cb and Cr
channel values for training. And the proposed self-supervised
method could have higher results than all the other methods.
The results show the effectiveness of the combination of the
GCA network and the structure similarity loss for measuring
the quality of the first-time colorization result. We also test
the linear correlation coefficients (LCC) between our first-time
colorization results and second-time colorization results on the
four datasets. The results are shown in Table VI. As shown,
they have very high correlation. This verifies our insight of
cycle colorization consistency and provide support that the
results in Table II could reflect the colorization quality of
different methods.

F. Ablation study

The ablation study compares a number of different model
variants and justifies our design choices. We wish to evaluate
the importance of the key ideas in this paper: 1) the designs
of the losses and 2) the improvement of structure similarity
loss via the GCA network in comparison with our previous
conference version [4]. So, first, we try to remove each of
the three losses, i.e. the cycle consistency loss, the structure
similarity loss, and the spatial smoothness loss, and also let the
WAC network only estimate Cb and Cr channels. Table VII
shows the summary performance of different model variants.
Fig. 11 shows some qualitative examples. The results show that
any of these variants will degrade the colorization accuracy. In
the case of only Cb and Cr channels in WAC, the first-time
colorization results, which is shown in Fig. 11, are very poor,
while the second-time colorization results, which is shown in
Table VII, are very good. It is because the lack of estimating
the Y channel makes the structure similarity loss meaningless
and thus the training of the model is over-fitted to the cycle
consistency loss which misleads the training and the mode
collapse problem occurs. We also test it on the SceneFlow
dataset. The average PSNR(dB)/SSIM values of the first-
time colorization results and the second-time colorization
results are 37.22/0.795 and 45.02/0.993. From the objective
experimental results, we can notice the big quality differences
between the first-time and second-time colorization, while our
method, as shown in Tables and , has similar colorization
qualities between the first-time and second-time colorization
results. This verifies the contributions of all these designs of
our method. Second, we remove the key component of the
structure similarity loss via GCA network, including using the
learned structure similarity loss in [4] instead of the GCA
network, removing the whole GCA network, removing the
estimation of the confidence map within the GCA network,
removing the relative position map within the GCA network,
and using the global color transfer method [33] to substitute
for the GCA network. The summary performance of different
model variants is also shown in Table VII. And Fig. 12 shows
some qualitative examples. The results show that any of these
variants will degrade the colorization accuracy, which verify
the contributions of these key components within the GCA
network.

V. CONCLUSION

We have presented a novel CNN model, named Cycle CNN,
for colorization in real monochrome-color dual-lens system. It
can be trained directly using the real data from monochrome-
color camera systems without any synthesized data. The pro-
posed method use the Weighted Average Colorization (WAC)
network to do the colorization twice. In addition, we introduce
the Global Curve Adjustment (GCA) network and the structure
similarity loss for measuring the quality of the first-time
colorization result, the cycle consistency loss for measuring
the quality of the second-time colorization result, and the
spatial smoothness loss to encourage spatial smoothness of the
colorization result. Our method achieves superior performance
than the state-of-the-art methods for colorizing real data.
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TABLE III
PROCESSING TIME (MS) OF DIFFERENT METHODS FOR IMAGES WITH DIFFERENT RESOLUTIONS. THE NON-LEARNING BASED METHOD OF JEON [1] IS

RUN ON CPU, AND THE DEEP LEARNING BASED METHODS ARE RUN ON GPU.

Xu Lu Lee Furusawa He18 He19 Zhao Su Yoo Xiao Jeon Dong Ours
1024 × 800 931 8518 508 8149 3184 121931 11284 920 12457 65735 93662 313 803
512 × 400 304 3274 239 2361 713 34836 3141 977 3147 24087 23861 112 251
256 × 200 164 1227 131 636 154 8132 853 785 840 8395 6018 40 85

TABLE IV
AVERAGE PSNR VALUES (DB) OF THE FIRST-COLORIZATION RESULTS

AND THE SECOND-COLORIZATION RESULTS OF DIFFERENT COLORIZATION
METHODS ON THE SYNTHESIZED DATASETS. CT, MB, ST, AND SF ARE

SHORT FOR THE DATASETS OF CITYSCAPES, MIDDLEBURY, SINTEL, AND
SCENEFLOW, RESPECTIVELY.

First-time colorization Second-time colorization
CT MB ST SF CT MB ST SF

Xu 38.83 33.52 37.96 33.62 39.51 36.06 38.48 33.41
Lu 39.78 29.81 38.16 39.08 39.22 29.93 38.45 38.93
Lee 30.58 23.74 27.10 29.05 29.05 23.94 27.07 28.69

Furusawa 35.21 31.13 32.43 28.62 34.42 31.13 31.73 28.13
He18 39.17 35.81 36.72 32.81 40.36 36.51 37.93 33.26
He19 39.53 36.72 36.37 32.46 40.62 36.59 37.48 33.15
Zhao 31.92 23.92 27.24 28.93 30.82 23.21 26.86 28.31
Su 31.75 23.64 29.33 35.60 29.14 23.76 28.64 27.51

Yoo 24.74 23.43 26.79 29.50 29.91 29.02 29.31 34.18
Xiao 38.10 27.55 31.08 32.15 38.12 27.66 31.09 31.98
Jeon 39.33 36.80 36.12 31.32 40.54 36.11 37.39 31.79
Dong 44.87 42.53 44.46 45.71 44.55 42.18 44.05 45.15
Ours 45.22 42.30 43.95 45.50 45.26 42.35 43.94 45.67

TABLE V
AVERAGE SSIM VALUES OF THE FIRST-TIME COLORIZATION RESULTS

AND THE SECOND-TIME COLORIZATION RESULTS OF DIFFERENT
METHODS ON THE FOUR SYNTHESIZED DATASETS. CT, MB, ST, AND SF
ARE SHORT FOR THE DATASETS OF CITYSCAPES, MIDDLEBURY, SINTEL,

AND SCENEFLOW, RESPECTIVELY

First-time colorization Second-time colorization
CT MB ST SF CT MB ST SF

Xu 0.899 0.942 0.923 0.898 0.905 0.949 0.927 0.906
Lu 0.969 0.895 0.948 0.954 0.962 0.891 0.947 0.951
Lee 0.870 0.830 0.777 0.807 0.826 0.805 0.776 0.789

Furusawa 0.843 0.861 0.795 0.798 0.852 0.873 0.793 0.805
He18 0.953 0.950 0.949 0.924 0.965 0.957 0.973 0.929
He19 0.955 0.957 0.955 0.927 0.962 0.957 0.963 0.931
Zhao 0.965 0.878 0.867 0.894 0.961 0.867 0.861 0.891
Su 0.957 0.883 0.905 0.944 0.948 0.874 0.900 0.904

Yoo 0.902 0.867 0.846 0.898 0.960 0.873 0.856 0.890
Xiao 0.971 0.891 0.912 0.909 0.966 0.886 0.910 0.907
Jeon 0.953 0.958 0.943 0.927 0.953 0.950 0.959 0.928
Dong 0.987 0.988 0.988 0.992 0.986 0.986 0.990 0.989
Ours 0.983 0.983 0.984 0.989 0.987 0.984 0.988 0.992
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