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Image denoising is a fundamental problem in computer vision and multimedia computation. Non-local filters
are effective for image denoising. But existing deep learning methods that use non-local computation structures
are mostly designed for high-level tasks, and global self-attention is usually adopted. For the task of image
denoising, they have high computational complexity, and have a lot of redundant computation of uncorrelated
pixels. To solve this problem and combine the marvelous advantages of non-local filter and deep learning, we
propose a Convolutional Unbiased Regional (CUR) transformer. Based on the prior that, for each pixel, its
similar pixels are usually spatially close, our insights are that 1) we partition the image into non-overlapped
windows and perform regional self-attention to reduce the search range of each pixel, and 2) we encourage
pixels across different windows to communicate with each other. Based on our insights, the CUR transformer
is cascaded by a series of convolutional regional self-attention (CRSA) blocks with U-style short connections.
In each CRSA block, we use convolutional layers to extract the query, key, and value features, namely Q, K, and
V, of the input feature. Then, we partition the Q, K, and V features into local non-overlapped windows, and
perform regional self-attention within each window to obtain the output feature of this CRSA block. Among
different CRSA blocks, we perform the unbiased window partition by changing the partition positions of
the windows. Experimental results show that the CUR transformer outperforms the state-of-the-art methods
significantly on four low-level vision tasks, including real and synthetic image denoising, JPEG compression
artifact reduction, and low-light image enhancement.
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Fig. 1. Example results in the tasks of real and synthetic image denoising, JPEG compression artifact reduction,
and low-light image enhancement.

1 INTRODUCTION

As shown in Fig. 1, different kinds of noises, e.g. spot noise, compression noise and structure
noise, widely exist in our daily used images. Image denoising is not only important for enhancing
the human visual perception of the images, but also beneficial for improving the accuracy of the
following high-level computer vision algorithms, e.g. face recognition and image classification.

Due to the success of deep learning in various fields, the study of deep learning-based filters for
image denoising has attracted much attention. Most existing deep learning-based filters are CNN-
based, e.g. DnCNN [65], and have achieved great performance improvements for image denoising.
On the other hand, recently, the transformer network provides a different deep learning architecture
and has obtained tremendous success in different vision tasks. The self-attention mechanism in
transformer provides the non-local computation structure between pixels. Since non-local filters,
e.g. BM3D [9], have achieved competitive performance among traditional hand-crafted filters, in
this paper, we seek to expand the applicability of transformer and propose a deep learning-based
non-local filter.

The limitation of most existing deep learning methods that use non-local computation structures,
e.g. non-local neural network [52], is that they usually follow the basic global self-attention form
of non-local computation and thus, for the image denoising task, every pixel must be compared

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2022.


https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

CUR Transformer: A Convolutional Unbiased Regional Transformer for Image Denoising 0:3

with every other pixel in the whole image. As a result, 1) the computational complexity O((HW)?)
is quite high, where H and W are the height and width of the image. In addition, 2) most of the
compared pixels are uncorrelated and have little contribution to the image denoising task.

Based on the commonly mentioned prior [4], that, for each pixel, its best fitting pixels are usually
spatially close, our insights are that 1) we reduce the search range of each pixel by performing
regional self-attention, i.e. we partition the image into windows, and perform self-attention within
each window. Thus, given the window size as w X w, the computational complexity is reduced
to O(w?(HW)). 2) Pixels across different windows can communicate with each other so that the
partition positions of windows will not affect the collection of similar pixels for image denoising.

Based on our insight, as shown in Fig. 2, 1) we propose the convolutional regional self-attention
(CRSA) block. For the input feature, we extract the query, key, and value features, namely Q, K,
and V, by multiple convolutional layers instead of commonly used embeddings of partitioned
patches in previous transformer-based works [7, 49]. This is because the convolution operation can
increase the receptive field of each pixel, i.e. increasing the number of communicated pixels for
each pixel, across different windows when more CRSA blocks are cascaded. Then, the Q, K, and
V maps are partitioned into non-overlapped windows. And regional self-attention is performed
between features of pixels within each window to get the output feature of this CRSA block. 2)
Among different CRSA blocks, as shown in Fig. 3, we perform an unbiased window partition, i.e. the
partition positions of windows change among different blocks. This can avoid that each partitioned
window always contains the same set of pixels, and help different pixels in local neighborhood
communicate with each other. 3) To build the convolutional unbiased regional (CUR) transformer,
we cascade a series of CRSA blocks with the popular U-style short connections [44] between them
without downsampling and upsampling of the feature.

Experimental results on four tasks, i.e. real image denoising, synthetic image denoising, JPEG
compression artifact reduction, and low-light image enhancement, show that the proposed CUR
transformer outperforms all the comparison methods largely.

The contributions of this paper are the following:

e We develop a deep learning-based non-local filter that reduces the search range of pixels by
regional self-attention.

e We integrate convolution into the regional self-attention block to encourage communications
of neighboring pixels across different windows in each regional self-attention block.

e We propose an unbiased window partition mechanism to let neighboring pixels have unbiased
opportunity to communicate in different regional self-attention blocks.

2 RELATED WORK

Hand-crafted image filters are one of the main solutions for the task of image denoising. According
to the computation of the filtering weight [2], image filters can be classified into domain filters,
bilateral filters, and non-local filters. Domain filters, e.g. Gaussian filter, have poor performance
for edge-preserving and will introduce reversed gradients in edge regions. Bilateral filters, e.g.
the original bilateral filter [47] and guided image filter [25], have better performance for edge-
preserving. But, in edge regions, the edge pixels may have few pixels around them with similar
colors, leading to reversed gradients too. Non-local filters, e.g. non-local means [5] and BM3D
[9], have better performance due to no smoothness assumptions about neighboring pixels. The
advantage is also analyzed by [31]. However, traditional hand-crafted image filters usually have
many parameters that need to be adjusted manually, and thus have several limitations, e.g. weak
generalization ability and low denoising accuracy, especially in comparison with the deep learning
based denoising methods.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2022.



0:4 Xu et al.

Existing deep learning based filters are mostly CNN-based, like SRCNN [12] and RCAN [66]
(which combines CNN with channel attention) for super resolution, DnCNN [65], TNRD [8] and
HRCN [29] for image denoising, and RDN [68] for various low-level tasks. With the help of CNN,
these filters are powerful and have obtained impressive performance improvements in the entire
field. However, the basic structure of CNN is usually the 3 X 3 convolution. Under this structure,
pixels with very small distance (less than 3 X 3) can communicate with each other directly, and most
pixels in the local neighborhood have to communicate with each other indirectly by multiple layers
of convolutions. A straight-forward solution to enable more direct communications of CNN-based
methods is to enlarge the convolution kernel, but this increases the number of model parameters
dramatically and makes the model difficult to be trained. Since deep learning based filters are
not only import for image enhancement problems [13-17], but also beneficial to high-level vision
applications [20, 28, 33, 34, 53-55], we propose a new deep learning model in this paper.

Immigrated from Bert [10] in NLP fields, the self-attention based deep learning framework uses
non-local computation structures and can enable the communications of pixels in non-local regions
without increasing the model parameters a lot. And a series of self-attention based models have been
proposed in the field of computer vision. The work in [52] inserts several non-local neural network
layers to CNN backbones to filter the high-level visual features. The pioneer visual transformer
models, e.g. ViT [19] and DeiT [48], treat the image as a sequence of visual words and the processing
is similar to the previous works in NLP fields, e.g. Bert. CVT [58] and Ceit [62] propose to combine
convolution with self-attention in the transformer structure. However, most of them are designed
for high-level vision tasks, e.g. facial expression recognition and image classification. Some recent
works of RNAN [67], IPT [7] and Resformer [63] also show the marvelous power of the transformer
for low-level tasks, which is closely related to the problem in this paper. However, most existing
self-attention based methods perform global self-attention, where each pixel must be compared
with all the other pixels over the image. This is not a big problem for high-level tasks because the
feature size has usually been reduced to be small by pooling. But, when using global self-attention
for image denoising, 1) the computational complexity is very high, due to the use of full resolution
of pixels of the images. In addition, 2) most of the compared pixels are unrelated and have little
contribution for image denoising.

Several recent works, e.g. Swin transformer [38], Twins [59], and HaloNets [3], propose to use
regional self-attention backbones for high-level tasks, e.g. image classification. In comparison with
global self-attention, regional self-attention can reduce the computational complexity a lot. But,
directly using them for image denoising is not suitable and the denoising quality is not competitive,
because during the straight-forward regional self-attention computation, the communications of
different pixels in local neighborhood are usually biased. SwinIR [35] cascades the computation
block from Swin transformer for the low-level tasks, but it also shares similar limitations of biased
communications of different local neighboring pixels. In comparison, in this paper, 1) we use
multiple convolutional layers to extract the Q, K, V features in the CRSA block. And 2) we use the
unbiased window partition between different CRSA blocks. Lastly, 3) we cascade a series of CRSA
blocks with U-style short connections. The differences make our method be able to encourage pixels
to have more and unbiased communications with neighboring pixels across partitioned windows,
and the framework is more suitable for generating full-resolution output for the image denoising
task.

3 METHOD

An overview of the model is shown in Fig. 2. The CUR transformer is built by cascading multiple
convolutional regional self-attention (CRSA) blocks (14 blocks in this paper) in a U-style connection
way [44] without downsampling or upsampling.
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Fig. 2. The overall structure of our model. The CRSA blocks are cascaded with U-style short connections to
build the CUR transformer. In each CRSA block, the features Q, K, V are extracted from the input feature
Fin by multiple convolutional layers, which are then partitioned into non-overlapped windows. Regional
self-attention for the partitioned features in each window i, i.e. q;, k;, v;, is performed to get the processed
feature v;. The features ¥; over all windows are concatenated to get V, which is then normalized by LayerNorm
to get the output feature Fyy; with the residual connection with Fj,.

In each of the proposed CRSA blocks, the query, key, and value feature maps, i.e. Q € ROH*W,
K € ROHXW 'y ¢ REXHXW ‘are extracted by multiple convolutional layers instead of the commonly
used patch embedding in transformer-based works [7, 38], because convolution can encourage the
communications of different pixels across the boundary of partitioned windows, where C is the
channel number (32 in this paper), H and W are the height and width of the image respectively.
Then, given the partition position 4, the Q,K,V features are partitioned into non-overlapped
windows with the window size of w X w. For each window i, the partitioned features from Q,
K, V are named q; € R“"*", k; € ROWXW y; € REWXW respectively. Next, we perform the
regional self-attention, i.e. conducting the self-attention between q;, k;, v; within each window i to
obtain the output feature v; of this window, and collect the V; over all windows to obtain the final
output feature V. In comparison with the global self-attention in traditional vision transformers,
e.g. RNAN[67], whose computational complexity is O((HW)?), the regional self-attention only
lets pixels within the same window perform self-attention with each other. In each window, the
computational complexity is O(w?) and there are }‘Iv W windows in total, so the computational
complexity of the regional self-attention is O(w?(HW)), which is much smaller than O((HW)?) of
the global self-attention.

In each partitioned window of the CRSA block, the center pixels can have enough communications
with their neighboring pixels, but the corner pixels can only have communications with just a
part of their neighboring pixels, e.g. the top-left pixel can only communicate with a quarter of
its neighboring pixels due to the partition. This leads to biased sampling of neighboring pixels
for different pixels. So, as shown in Fig. 3, we propose an unbiased window partition strategy to
change the partition positions 4 in different CRSA blocks. In detail, in neighboring CRSA blocks,
we change the window partition positions along the diagonal direction, so as to avoid that some
pixels always locate in the corner of the partitioned windows in different CRSA blocks and thus
avoid biased treatment of different pixels.

The head module consists of three convolutional layers, and each layer has a 3 X 3 convolution,
Batch Normalization and ReLu, with the channel number of C. The tail module consists of a 1 X 1
convolutional layer without Batch Normalization or ReLu, with the channel number of 3.
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Fig. 3. The partition positions of windows in different Swin blocks using the Swin-style partition and in
different CRSA blocks using our unbiased window partition. Here, for simplification, we show the example
of 8 blocks with the window size of 8 X 8. The region marked by slashes shows the set of pixels that are
always partitioned into the same window according to the Swin-style partition, leading to biased sampling of
neighboring pixels.

3.1 Convolutional Regional Self-Attention (CRSA)

In each CRSA block, as shown in Fig. 2, the convolutional part consists of three convolutional
layers to extract the feature maps Q, K, V from the input feature F;,. Each convolutional layer has
a 3 X 3 convolution with Batch Normalization and ReLu.

Then, we partition the feature maps into non-overlapped windows, and get the features q;, k;,
v; of each window i. We follow [38] to add the relative position bias B € R and dimension C
into the softmax, and the self-attention within each window is performed by

vi= Softmax(q,-kiT/\/E + B)v;. (1)

Then we concatenate V; over all windows to get V, and get the output feature Foy¢ of this CRSA
block by
Fout = LN(V) + Fin, (2)

where LN denotes a LayerNorm layer.

3.2 The Unbiased Window Partition

The work of Swin Transformer in [38] also changes partition positions of windows in successive
blocks. But it only has two different partition positions among all CRSA blocks and repeats the
partition positions in every two blocks. This will lead to the same set of pixels always being
partitioned into the same window, and thus, for each pixel, its communication with the neighboring
pixels is biased.

To overcome the limitation of the Swin-style partition, we propose the unbiased window partition
in this paper. Fig. 3 provides the details about the partitioned windows from the 1st to the 8th blocks
using the Swin-style partition and our unbiased partition mechanism to introduce the proposed
method and explain the differences between Swin-style partition and ours (this example uses 8
blocks for simplification). Similar with Swin Transformer, we change the partition positions of
windows in different CRSA blocks. And different from Swin Transformer that only has two different
partition positions among all blocks and repeats the partition positions in every two blocks, we
propose the unbiased partition strategy. As shown in the figure where the blocks with different
partition positions are marked with different colors, for the settings of 8 CRSA blocks and the
window size of 8x8, we select eight different partition positions.

To further explain why Swin is biased while ours is unbiased, we provide the Fig. 4. In the
figure, we select three pixels A, B and C, and the distance between A and B is equal to the distance
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Fig. 4. An example to show the communication times between the pixels A, B, and C from the 1st to the 8th
blocks (Y’ means the pixels have communications while ‘N’ means they do not have communication) using
the Swin-style partition and our unbiased partition, and thus to explain why our method is ‘unbiased’.

between B and C. According to the Swin-style partition (the top line of this figure), A and B have
communications with 4 times, i.e. blocks 2,4,6,8. And, B and C have communications with 8 times,
i.e. blocks 1,2,3,4,5,6,7,8. Although B has the same distance with A and C, the communication times
of B&A and B&C are different, so we call the Swin-style partition biased. According to our method
(the bottom line of this figure), A and B have communications with 5 times, i.e. blocks 2,3,5,6,7. And,
B and C have communications with 5 times too, i.e. blocks 1,2,4,7,8. This shows that, in comparison
with the Swin-style partition, the communication times of pixels are more unbiased using our
method. In addition, for pixels with larger distance, for example pixels A and C, according to the
Swin-style partition, they have communications with 4 times, i.e. blocks 2,4,6,8. And, according
to our method, they have communications with 2 times, i.e. blocks 2,7, which are less than the
communication times of A&B and B&C. In our opinion, our method is more reasonable because
pixels with larger distances are usually less correlated for the image denoising task, and thus should
have less communications. In short, as explained above, for pixels with the same distance, the
communication times of our method are more unbiased than the Swin-style partition. In addition,
for pixels with different distances, the communication times of our method are more reasonable
than the Swin-style partition.

In our unbiased window partition method, the partition positions % of windows change like
binary search along the diagonal direction in different CRSA blocks. In the traditional binary search,
for an 1D array of 8 elements, the search order is that: The first search position is 5. The second
search position is 3 or 7 (depending on the first search result). The third search position is 2 or 4 or
6 or 8. Following this binary search style, the order of the partition positions along the diagonal
direction in our method is 1-5-3-7-2-4-6-8. The first and second CRSA blocks in our method have the
same partition positions with the Swin-style partition, while the following 6 blocks have different
partition positions. The advantage of the binary-search-style arrangement of the eight partition
positions is that we can avoid that any two pixels always have communications in neighboring
CRSA blocks and thus encourage each pixel to communicate with different pixels in neighboring
CRSA blocks.

In the image boundary regions, the partitioned windows may not be with the size of w X w.
For example, as Fig. 5 shows, there are 16 partitioned windows, and except windows 6,7,10,11,
the sizes of the other windows are not w X w. In our processing, whatever the window size is,
we let the pixels within each window perform the regional self-attention to obtain their output
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Fig. 5. An example to show the partitioned windows using the partition position of the 6th block according
to our unbiased window partition mechanism (as introduced in Fig. 3), and to explain the processing in the
image boundary regions.

features. When performing the regional self-attention within each window, as the subfigure of the
Regional Self-Attention of the i*" window in Fig. 2 shows, the query, key, value features are firstly
reshaped to 1D vectors and then the self-attention between these 1D vectors is performed. So, the
irregular windows do not change the computation a lot. The only difference is that the sizes of the
reshaped1D vectors are smaller than 1 * w?, but the computation can still be performed.

4 EXPERIMENTS
4.1 Datasets

The datasets for the four tasks of real image denoising, synthetic image denoising, JPEG compression
artifact reduction, and low-light image enhancement are described below, respectively.

Real image denoising. The popular SIDD dataset [1] is used, which contains 320 pairs of noisy
images and the noise-free ground-truth images for training and 1280 pairs of images for validation.

Synthetic image denoising. The well-known COCO dataset [37], which consists of over 160,000
color images of high diversity, is used as the source of the training dataset and the validation dataset.
We select 1,500 images from COCO randomly, and divide them into 1000 images as the training
dataset and 500 images as the validation dataset. And we use Urban100 [26] and BSD68 [39] datasets
for the testing. To perform a fair comparison, for images in the training and validation datasets, we
follow [7] to process the original images from COCO by cropping them to the resolution of 224 x 224
at random positions. Then, we generate the distorted images by adding zero-mean Gaussian noises
at four different noise levels, i.e. o2 is set as 10, 30, 50, and 70, respectively.

JPEG compression artifact reduction. Same with the image denoising task, we follow [7] to generate
the training and validation datasets for fair comparison. We randomly select 1,500 images from
COCO dataset, divide them randomly into the training dataset with 1,000 images and the validation
dataset with 500 images, and crop them to the resolution of 224 x 224. The Classic5 [21] and LIVE
[45] datasets are used as the testing dataset. To generate the distorted images by JPEG compression,
we use Matlab JPEG encoder [27] to generate compressed images with four different compress
quality levels (CQL), i.e. 10, 20, 30, and 40, respectively.

Low-light image enhancement. We use the well-known LOL [57] dataset, which contains 500
low/normal-light image pairs. For fair comparison, we follow the method of Wei et al. [57] to select
485 image pairs of the dataset into the training dataset and the left 15 image pairs into the testing
dataset.
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4.2 Training

We implement our model using MindSpore [41]. We use one Nvidia 3090 GPU to train the deep
model using the conventional Adam optimizer [30] with b1 = 0.9, and b2 = 0.999 for 200 epochs
on each dataset. The initial learning rate is set as 0.0001 and decayed by half every 20 epochs.The
batch size is set as 1. Training our model roughly takes 1 day for 200 epochs. For image denoising
and image compression artifact reduction, we use end-to-end learning. But for the low-light image
enhancement, we perform a two-step enhancement: first we use the state-of-the-art global tone
mapping method of 3D LUT [64] to brighten the input low light images (noises are also amplified
at the same time), and the intermediate results are then denoised to generate the final result by our
method. The reason of using the two-step enhancement is that low-light image enhancement has
two problems that need to be solved, i.e. tonal adjustment and denoising. Pushing a single network
to solve the two problems is not a good strategy, and the work in [36] also has similar findings in
related problems. Because in this paper, we focus more on the image denoising performance, the
tonal adjustment task is finished by the existing method of 3D LUT. For all the comparison methods
in the low-light image enhancement task, we also use 3D-LUT to perform the tonal adjustment.

4.3 Loss

For image denoising and JPEG compression artifact reduction, the loss function is

L= ||J_Jgt||1 (3)

where J and J,; are the output and ground-truth images, respectively. For the low-light image en-
hancement, SSIM loss function [56], which originally consists of luminance, contrast, and structure
components, is utilized in our experiment. As mentioned above, we separate the enhancement
into 2 steps and the first step, i.e. global tone mapping, is finished by 3D-LUT. Since the result of
3D-LUT may not have exactly the same luminance level with the ground-truth image, using all the
three components in SSIM as the loss will have negative effect on the training. So, we remove the
luminance component and the loss is

ZO.JJ_qt + Cl
TR @
G T T
where 0y, and o? are the covariance and variance respectively and C; is a constant to prevent

division by 0.

4.4 Comparison Methods

We compare our method with several state-of-the-art traditional hand-crafted filters, including
gaussian filter, bilateral filter [47], guided image filter [25], Non-Local Means filter [5] and BM3D
[9]. We also compare our method with several state-of-the-art CNN-based filters, including DnCNN
[65], TNRD [8], RDN [68], SADNet [6], KPN [40], ADNet[46] and DeamNet[42]. Finally, we compare
our method with the state-of-the-art transformer-based filters, including IPT [7], Swin transformer
[38], RNAN [67], SwinIR [35] and Resformer [63]. To the best of our knowledge, IPT, RNAN and
SwinlR are the vision transformers that are designed for low-level vision tasks. Swin transformer is
not originally designed for low-level vision task, but it is a latest backbone based on the regional
self-attention, and is related to our architecture. So, we adapt it by removing its pooling layers for
comparison.

In the task of JPEG compression artifact reduction, we compare our method with the state-of-
the-art compression artifact reduction methods, including SA-DCT [21] and ARCNN [11].
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(e) BM3D (g) DACNN (h) SADNet

() KPN
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(m) ADNet (n) DeamNet (o) RNAN (p) SwinIR

q) Resformer r) Ours (s) GT

Fig. 6. Example results in the task of real image denoising. The region marked in red is enlarged and shown
in the following row.
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(q) Resformer (r) Ours (s) GT

Fig. 7. Example results in the task of synthetic image denoising. The region marked in red is enlarged and
shown in the following row.
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(q) Resformer

Fig. 8. Example results in the task of synthetic image denoising. The region marked in red is enlarged and
shown in the following row.
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(b) BM3D (c) SA-DCT (d) ARCNN () TNRD (f) DnCNN

(g) SADNet (h) RDN (i) Swm () IPT (k) KPN l) ADNet

(m) DeamNet (n) RNAN (o) SwinIR (p) Resformer q) Ours (r) GT

Fig. 9. Example results in the task of JPEG compression artifact reduction. The region marked in red is
enlarged and shown in the following row.
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(c) CRM
(h) deepUPE (i) Retinex

(m) DnCNN (n) SADNet (o) RDN

(t) DeamNet

(a) Input

|

W\

(u) RNAN

(w) Resformer (x) Ours

Fig. 10. Example results in the task of low-light image enhancement. The region marked in red is enlarged
and shown in the following row.
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Table 1. Average PSNR (dB) and SSIM values of different methods on the SIDD dataset for real image
denoising.

Method Gaussian  Bilateral ~ Guided NLM BM3D TNRD DnCNN  SADNet RDN
PSNR 29.27 30.53 33.41 27.55 35.56 36.72 37.18 39.53 39.05
SSIM 0.603 0.679 0.797 0.517 0.843 0.912 0.899 0.936 0.932
Method IPT Swin KPN ADNet DeamNet RNAN SwinIR Restormer Ours
PSNR 26.47 36.31 32.06 34.01 38.84 38.54 38.97 39.00 40.08
SSIM 0.798 0.890 0.761 0.796 0.935 0.926 0.930 0.938 0.938

We highlight the best-performing model in each metrics.

Table 2. Average PSNR (dB) and SSIM values of different methods on the Urban100 and CBSD68
datasets for synthetic image denoising with four different noise level (¢2).

Urban100 CBSD68

Method o2=10 o2=30 2=50 a?=70 a?=10 a2=30 a?=50 a2=70

Gaussian 24.68/0.793  23.24/0.669 21.42/0.557 19.71/0.469 27.75/0.809 25.31/0.653 22.85/0.513 20.79/0.413
Bilateral 32.50/0.912  20.04/0.495 15.32/0.318 12.75/0.229 32.89/0.894 19.99/0.386 15.21/0.216 12.64/0.145
Guided 29.40/0.881 22.04/0.565 16.89/0.358 13.87/0.252 30.55/0.862 22.52/0.479 16.96/0.258 13.85/0.166
NLM 30.07/0.882 21.15/0.575 17.61/0.421 15.68/0.329 29.94/0.833 21.76/0.498 18.44/0.349 16.57/0.263
BM3D 35.65/0.958 29.00/0.881 25.41/0.803 22.72/0.729 35.66/0.951 29.07/0.835 25.87/0.736  23.50/0.661
TNRD 34.46/0.964 28.17/0.879 25.51/0.804 23.86/0.742 35.12/0.950 29.07/0.841 26.64/0.762 25.24/0.706
DnCNN 35.07/0.961 28.60/0.876 25.22/0.768 23.38/0.695 35.47/0.949 29.19/0.832 26.45/0.729 24.90/0.656
SADNet 35.10/0.963 29.22/0.892 26.53/0.829 24.72/0.772 35.66/0.952 29.80/0.855 27.50/0.785 25.95/0.729
RDN 35.75/0.967 29.66/0.899 26.85/0.834 25.01/0.774 35.96/0.954 30.02/0.855 27.53/0.778 26.04/0.719
Swin 31.56/0.924 26.61/0.844 24.26/0.765 22.72/0.699 33.02/0.907 28.20/0.816 25.99/0.738 24.63/0.681
IPT 30.26/0.937 28.39/0.879 26.17/0.817 24.61/0.761 31.60/0.926 29.13/0.840 27.10/0.765 25.78/0.707
KPN 35.01/0.951 29.05/0.873 26.42/0.828 24.58/0.759 35.39/0.945 29.57/0.842 27.17/0.762 25.81/0.716
ADNet 34.76/0.921 28.85/0.809 25.69/0.808 22.54/0.678 34.59/0.892 29.07/0.820 26.33/0.756 23.43/0.693
DeamNet 35.49/0.946 29.58/0.865 27.38/0.853 25.24/0.798 35.79/0.934 29.12/0.832 27.59/0.758  26.24/0.739
RNAN 35.84/0.961 30.08/0.909 27.30/0.850 25.23/0.786 36.05/0.954 30.26/0.864 27.82/0.793 26.25/0.733
SwinIR 35.82/0.967 29.87/0.904 27.05/0.843 25.25/0.788 35.99/0.954 30.18/0.862 27.73/0.789 26.30/0.735
Resformer 35.91/0.969 29.98/0.908 27.24/0.853 25.47/0.805 36.04/0.955 30.13/0.863 27.65/0.792 26.21/0.740
Ours 35.98/0.969 30.11/0.910 27.64/0.862 25.86/0.811 36.11/0.956 30.29/0.865 27.94/0.799 26.49/0.745

We highlight the best-performing model in each column.

In the low light image enhancement task, we compare our method with the state-of-the-art
low-light image enhancement methods, including CRM [61], LIME [24], BIMEF [60], SRIE [23], MF
[22], RRM [32], Dong [18], JED [43], DeepUPE [50], RetinexNet [57], KinD [69] and GLAD [51].

For fair comparison, we re-train all the deep learning-based comparison methods and ours with
the same training strategy. And in the objective evaluation, we use PSNR and SSIM [56] as the
metrics.

4.5 Results

Objective results of the four tasks, i.e. real image denoising, synthetic image denoising, JPEG
compression artifact reduction, and low-light image enhancement, are shown in Tables 1, 2, 3,
and 4. Example subjective results are shown in Figs. 6, 7, 8, 9, and 10. From the results, we can
notice that our method unsurprisingly outperforms the traditional hand-crafted methods a lot, i.e.
the Gaussian filter, the bilateral filter, the guided filter, non-local means, and BM3D. This verifies
the effectiveness of deep learning techniques for image denoising. In addition, our method also
achieves better accuracy than the CNN-based methods, i.e. TNRD, DnCNN, SADNet, RDN, in all
the four tasks. This shows that the regional non-local computation within the CSRA block of our
method can provide more powerful ability for image denoising than the network structures of
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Table 3. Average PSNR (dB) and SSIM values of different methods on the LIVE and Classic5 datasets for JPEG
compression artifact reduction with four different compress quality levels (CQL).

LIVE1 Classic5

Method CQL=10 CQL=20 CQL=30 CQL=40 CQL=10 CQL=20 CQL=30 CQL=40
Gaussian 25.24/0.735 26.44/0.785 26.84/0.803 27.05/0.812 27.69/0.757 28.63/0.796 28.95/0.811 29.09/0.818
Bilateral 26.07/0.766 28.52/0.842 29.83/0.872 30.73/0.889 28.48/0.785 30.60/0.843 31.75/0.868 32.45/0.881
Guided 25.96/0.742 27.67/0.790 28.45/0.809 28.95/0.820 28.08/0.762 29.41/0.801 30.06/0.818 30.42/0.827
NLM 25.69/0.749 28.06/0.830 29.37/0.865 30.29/0.886 27.82/0.767 30.14/0.841 31.51/0.872 32.46/0.889
BM3D 26.06/0.768 28.61/0.848 29.97/0.880 30.91/0.897 28.72/0.795 31.05/0.854 32.30/0.875 33.09/0.886
SA-DCT 26.63/0.778 28.83/0.848 30.03/0.879 30.88/0.897 28.88/0.795 30.91/0.853 32.13/0.879 32.99/0.894
ARCNN 26.50/0.774 28.75/0.846 30.01/0.877 30.83/0.894 28.59/0.784 30.75/0.848 32.00/0.877 32.87/0.894
TNRD 26.89/0.783 29.19/0.853 30.48/0.885 31.39/0.902 28.99/0.792 31.15/0.853 32.42/0.880 33.34/0.897
DnCNN 26.78/0.786 29.13/0.856 30.48/0.887 31.38/0.903 28.98/0.799 31.27/0.859 32.58/0.885 33.40/0.900
SADNet 27.12/0.792 29.29/0.859 30.67/0.890 31.44/0.905 29.12/0.802 31.32/0.861 32.62/0.885 33.37/0.898
RDN 27.13/0.793 29.48/0.861 30.80/0.891 31.70/0.908 29.28/0.804 31.42/0.861 32.71/0.887 33.60/0.901
Swin 26.37/0.768 28.58/0.840 29.79/0.873 30.64/0.891 28.39/0.777 30.52/0.842 31.82/0.873 32.71/0.891
IPT 22.04/0.721 19.64/0.751 17.18/0.735 16.69/0.738 20.87/0.675 19.07/0.691 16.76/0.663 15.13/0.669
KPN 27.14/0.794 29.55/0.871 30.82/0.895 31.73/0.915 29.26/0.806 31.47/0.865 32.73/0.882 33.62/0.899
ADNet 26.95/0.787 29.23/0.841 30.52/0.892 31.40/0.911 29.12/0.799 31.25/0.855 32.48/0.885 33.47/0.900
DeamNet 27.20/0.791 29.53/0.856 30.89/0.895 31.79/0.909 29.34/0.809 31.46/0.869 32.63/0.871 33.52/0.887
RNAN 27.23/0.796 29.64/0.864 30.88/0.894 31.78/0.910 29.27/0.807 31.50/0.864 32.78/0.889 33.66/0.903
SwinIR 27.22/0.794 29.60/0.862 30.90/0.892 31.81/0.908 29.26/0.803 31.48/0.861 32.79/0.887 33.68/0.902
Restormer 27.22/0.796  29.53/0.864  30.87/0.893 31.79/0.910  29.24/0.808  31.52/0.864  32.79/0.888  33.64/0.902
Ours 27.31/0.806  29.68/0.873  30.97/0.902 31.85/0.918 29.42/0.817 31.60/0.873 32.87/0.898 33.74/0.912

We highlight the best-performing model in each column.

Table 4. Average PSNR (dB) and SSIM values of different methods on the LOL dataset for low-light image
enhancement.

Method  Gaussian Bilateral — Guided NLM BM3D TNRD DnCNN  SADNet RDN Swin
PSNR 21.98 22.39 22.23 22.14 22.41 22.85 22.49 22.97 23.03 22.31
SSIM 0.796 0.812 0.808 0.768 0.829 0.820 0.684 0.830 0.837 0.765
Method IPT KPN ADNet DeamNet RNAN SwinlR Resformer CRM LIME BIMEF
PSNR 19.08 21.71 22.86 22.19 23.00 23.01 23.04 17.20 16.76 13.88
SSIM 0.719 0.727 0.750 0.818 0.831 0.832 0.829 0.622 0.444 0.595
Method SRIE MF RRM Dong JED DeepUPE  RetinexNet KinD GLAD Ours
PSNR 13.03 16.97 15.36 16.72 13.69 13.36 16.77 19.66 19.72 23.11
SSIM 0.607 0.505 0.654 0.479 0.658 0.465 0.429 0.821 0.685 0.849

We highlight the best-performing model in each metrics.

only using convolutional layers. Also, our method has much better accuracy than the transformer-
based methods, i.e. IPT, Swin transformer, RNAN, SwinIR and Resformer on all the four tasks. In
comparison with IPT, RNAN and Resformer, the combination of convolution and regional self-
attention structure of our CUR transform can reduce the redundant computation of unrelated pixels
during the image denoising. In comparison with Swin transformer and SwinlIR, extracting features
by convolution, the unbiased window partition, and the U-style short connections of different CRSA
blocks contribute to a more suitable non-local filter structure in our method for solving the image
denoising problem. In conclusion, the results in all the four tasks demonstrate the effectiveness of
the proposed model for removing various kinds of image noises.

We analyze the computational complexity of different types of self-attention methods in Table.
5, including global self-attention, global self-attention with patch embedding, and regional self-
attention that we use in this paper. For the global self-attention, the computational complexity is
O((HW)?). ViT [19] and IPT [7] change the traditional global self-attention by adopting the patch
embedding within the global self-attention framework, and thus the time complexity is reduced to
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Table 5. Computational complexity of different types of self-attention, i.e. global self-attention, global self-
attention with patch embedding, and regional self-attention.

Type Example Methods Complexity
Global self-attention RNAN[67], Non-local O2(HW)?C) =
Neural Network[52] O((HW)?)
Global self-attention ViT[19], IPT[7] 0(2 H ;i)zc ) =
with patch embedding (HW)?
oY
Regional self-attention Ours O(HWW?C) =
O(HWw?)

Table 6. Computational costs of different methods for processing images with the size of 224 x 224.

Method Flops/G params/M  memory/MB time/s/img

TNRD 2.832 0.056 2961 0.1816

DnCNN 28.02 0.558 2175 0.0223

SADNet 14.52 3.451 1363 0.0082

RDN 278.6 5.552 13761 0.0651

Swin 77.72 1.557 9435 0.1131

IPT 573.2 176.7 13346 0.2565

KPN 40.61 27.65 2399 0.0217

ADNet 26.16 0.521 2501 0.0270

DeamNet 111.9 1.876 6077 0.0707

SwinIR 43.99 0.866 14058 0.0935

Resformer 107.9 26.12 20381 0.3003

Ours 121.7 2.425 4105 0.0898
O(<Hp‘2’)2 ), where p is the patch size. For the regional self-attention, the computational complexity
is O(w*) in each window with the window size of w, and there are £ windows in total, so the

w
computational complexity of the regional self-attention is O(HWw?), which is much smaller than

the other two self-attention methods. Given a real example of H = W = 1024, p = 4, and the
channel C = 96, the costs of global self-attention, global self-attention with patch embedding, and
regional self-attention are 2.11 % 10'%, 8.24 x 10! and 3.95 * 10'°, respectively. These show our
method is much efficient than the global self-attention with or without patch embedding. Please
note that in ViT and IPT, the channel C contains the feature of the set of pixels in each patch, while
in global self-attention and our regional self-attention, the channel C only contains the feature of a
single pixel. So, the value C in ViT and IPT is usually larger than the value C in global self-attention
and our regional self-attention. In our method, the value C is set to be 32, and under this setting
the cost of this real example is reduced to 1.32 * 101°.

We also report the computational costs of the comparison methods and ours in Table 6. In
comparison with transformer-based methods, we can notice that the computational cost of our
method is lower than IPT and the memory and time costs of our method are lower than Swin
transformer and SwinIR. And the accuracy of our method, which is reported in Tables 1, 2, 3, and
4, is higher than them on all the four tasks. This verifies the effectiveness of the combination of
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regional self-attention, convolution, and the unbiased window partition in our CUR transformer
for image denoising. In addition, the computational cost of our method is higher than most of
the CNN-based methods, due to the self-attention computation architecture. But, as reported in
Tables 1, 2, 3, and 4, the accuracy of the CUR transformer is higher than them for the four tasks.
We believe the future study will be conducted to reduce the computational consumption, and the
CUR transformer provides a good start for the field of image denoising to make use of transformer
techniques for designing deep learning-based regional non-local filter.

4.6 Ablation Study

Table 7. Ablation study of different variants of our model. Average PSNR(dB) and SSIM values are reported.

Task Real Synthetic JPEG Low-Light
Dataset SIDD Urban100 (o%=50) classic5 (CQL=10) LOL
No conv. 39.01/0.881 26.60/0.829 29.06/0.797 23.04/0.824
Global 39.12/0.892 25.93/0.809 28.67/0.789 22.49/0.822
No shift 39.57/0.911 27.35/0.850 29.24/0.804 22.95/0.823
Swin-shift 39.78/0.929 27.49/0.855 29.21/0.803 22.97/0.824
No U-style 39.31/0.902 27.02/0.841 29.18/0.801 23.01/0.831
Ours 40.08/0.938 27.64/0.862 29.42/0.817 23.11/0.849

Table 8. Ablation study of our model with different numbers of training images. “Base” and “Large”
devote using 1,000 and 10,000 images from COCO dataset for training, respectively. Average PSNR(dB)
and SSIM values are reported.

Base(c2=50) Large(c?=50)

Method CBSD68 Urban100 CBSD68 Urban100
TNRD 26.64/0.762 25.51/0.804 27.25/0.765 26.30/0.814
DnCNN 26.45/0.729 25.22/0.768 27.46/0.776 26.63/0.826
SADNet 27.50/0.785 26.53/0.829 27.96/0.801 27.57/0.861
RDN 27.53/0.778 26.85/0.834 27.78/0.789 27.38/0.850
Swin 25.99/0.738 24.26/0.765 27.66/0.790 26.71/0.840
IPT 27.10/0.765 26.17/0.817 27.83/0.806 27.55/0.860
KPN 27.17/0.762 26.42/0.828 27.69/0.797 27.32/0.848
ADNet 26.33/0.756 25.69/0.808 27.32/0.762 26.53/0.828
DeamNet 27.59/0.758 27.38/0.853 27.79/0.798 27.68/0.863
RNAN 27.82/0.793 27.30/0.850 28.01/0.801 27.95/0.872
SwinlR 27.73/0.789 27.05/0.843 27.90/0.794 27.71/0.868
Resformer 27.65/0.792 27.24/0.853 27.94/0.801 27.89/0.871
Ours 27.94/0.799 27.64/0.864 28.15/0.806 28.29/0.876

We compare a number of different model variants at the key parts of our CUR transformer. The
key ideas of our method include the combination of convolution and regional self-attention in the
CRSA block, and the unbiased window partition among different CRSA blocks. So we 1) remove
the convolutional layers in the CRSA block and use traditional embeddings of patches to extract
the Q, K, V features, 2) remove the regional self-attention computation and use traditional global
self-attention computation, which is very similar to the structure of the non-local neural network

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2022.



CUR Transformer: A Convolutional Unbiased Regional Transformer for Image Denoising 0:19

[52], 3) replace the unbiased window partition by partitioning without changing the positions, 4)
replace the unbiased window partition by the shifted partition of Swin transformer, and 5) remove
the U-style short connections. Table 7 shows the performance of different model variants. The
results show that any of these variants will degrade the image enhancement quality. This verifies
the contributions of different parts in our model.

To show the performance differences with different number of training images, we also show the
results of different comparison methods by training them with 1,000 and 10,000 images respectively.
Table 8 shows the performance of different number of training images. The results show that, more
training data will generally help different methods to obtain higher accuracy. And with different
training data, the CUR transformer has stable improvements in comparison with the other methods.

Table 9. Computational costs of the CUR transformer with different window size w and the corresponding
denoising accuracy on the datasets of CBSD68 and Urban100 (c2=50).

w params/M  Flops/G CBSD68 Urban100

7 2.416 115.1 27.75/0.789 27.18/0.847
14 2.425 121.7 27.94/0.799 27.64/0.862
28 2.478 148.3 28.02/0.802 27.69/0.866
56 2.601 253.8 28.05/0.809 27.71/0.867

To test the performance differences with different window sizes of our CUR transformer, we
also show the computational costs of the CUR transformer under different window size w and the
corresponding denoising results with 2=50 in Table 9. As shown, increasing the window size in a
certain range will improve the performance of the model, but when the window size continues to
increase, the performance will reach an upper limit, and the computational costs of the model will
increase significantly. To balance the computational costs and accuracy of the CUR transformer,
we use the window size of 14 in this paper.

5 CONCLUSIONS

We propose a Convolutional Unbiased Regional (CUR) transformer for solving the problem of
image denoising in this paper. To overcome the limitations of high computational complexity
and redundant computation of uncorrelated pixels of existing deep non-local filters, we propose
a convolutional regional self-attention (CRSA) block to combine convolution and regional self-
attention. We also cascade a series of CRSA blocks with U-style short connections, and among
different CRSA blocks, we perform the unbiased window partition by changing the partition
positions of windows. Experimental results on four tasks, i.e. real image denoising, synthetic
image denoising, JPEG compression artifact reduction, and low-light image enhancement, show
the effectiveness of the proposed method for removing different kinds of image noises.

The limitations of the proposed CUR transformer is that it is only suitable for the tasks where the
high-frequency components of the images need smoothing, e.g. image denoising, while not suitable
for some other tasks where the high-frequency components of the images need reconstructing
like image super-resolution. It is because the regional self-attention operations within the CUR
transformer actually perform weighted average of neighboring pixels to generate the output values.
This process is good at removing wrong high-frequency components but is not good at recovering
missing high-frequency components.
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