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A Colorization Framework for
Monochrome-Color Dual-Lens Systems using a

Deep Convolutional Network
Xuan Dong, Weixin Li*, Xiaoyan Hu, Xiaojie Wang, Yunhong Wang

Abstract—In monochrome-color dual-lens systems, the monochrome camera can capture images with higher quality than the color
camera. To obtain high quality color images, a better approach is to colorize the gray images from the monochrome camera with the
color images from the color camera serving as a reference. In addition, the colorization may fail in some cases, which makes the
estimation of the colorization quality a necessary step before outputting the colorization result. To solve these problems, we propose a
deep convolutional network based framework. 1) In the colorization module, the proposed colorization CNN uses deep feature
representations, attention operation, 3-D regulation and color correction to make use of colors of multiple pixels in the reference image
for colorizing each pixel in the input gray image. 2) In the colorization quality estimation module, based on the symmetry property of
colorization, we propose to utilize the colorization CNN again to colorize the gray map of the original reference color image using the
first-time colorization result from the colorization module as reference. Then, the quality loss of the second-time colorization result can
be used for estimating the colorization quality. Experimental results show that our method can largely outperform the state-of-the-art
colorization methods and estimate the colorization quality accurately as well.

Index Terms—Colorization CNN, weight volume, color correction, colorization quality estimation.
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1 INTRODUCTION

DUAL-LENS systems consisting of one monochrome
camera and one color camera are becoming more and

more popular in high-end smartphones, e.g. Huawei P9,
P10, P20, etc. Between the dual lens, the monochrome one
has better light efficiency than the color one [1], so the gray
image from the monochrome camera has higher quality (i.e.
signal-to-noise ratio) than the color image from the color
camera.

To get high quality color images using the dual-lens sys-
tem, we can use both cameras to shoot images at the same
time and then colorize the gray image from the monochrome
camera with the color image from the color camera as
reference. In this way, the colorized images will have high
quality in the monochrome channel and correct colors as
well. An example is shown in Fig. 1. Moreover, due to
occlusions, large displacement, etc., the colorization may fail
to get correct colors in some cases. Thus, it is also desirable
to estimate the colorization quality of each result so that our
framework can judge whether the result is an outlier or an
inlier, i.e. whether the colorization quality is good enough.
For the inlier cases, we output the colorization results as the
final results. And for the outlier cases, we output the color
images from the color camera for substitution, which have
lower qualities but correct colors. Thus, two problems are
required to be solved in the colorization framework, i.e. 1)
colorization and 2) colorization quality estimation.

In the literature, reference-based colorization methods,
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(a) The input pair of gray and color images. (b) The output color image.

(c) The input and output color images in the red box region.

Fig. 1. An example of colorization in the monochrome-color dual-lens
system. The input pair of images are captured by the dual-lens system
of Huawei P9 phone. The output colorization result using the proposed
method has high quality in the monochrome channel and correct colors.

e.g. [2], [3], [1], are related to our problem. Most methods,
e.g. [2], [3], usually use hand-crafted features, such as lumi-
nance, variance, etc., to search for the best-matching pixel in
the reference image for each pixel in the input image. And
Jeon et al. [1] use a stereo matching method, which searches
for the best-matching pixel based on brightness constancy
and edge similarity constraints. Although different features
and matching strategies are proposed, to estimate the color
of each pixel, the previous methods, e.g. [2], [3], [1], usually
copy the color of only one pixel in the reference image as the
result. We notice that, however, as shown in Fig. 4, for each
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Fig. 2. Framework of the proposed method. We use the colorization CNN twice in the colorization module and the colorization quality estimation
module respectively. In the colorization module, the colorization CNN generates the colorization result CI. In the colorization quality estimation
module, the horizontal flip operations enable the colorization CNN to be used without any changes, and the result CR0

is used for estimating the
colorization quality. In the training, both CI and CR0

are used for training the colorization CNN so as to obtain better accuracy. (Best viewed in
color)

pixel in the input image, there usually exist multiple pixels
in the reference image that have the correct colors, especially
in textureless and repeated texture regions. Utilizing more
pixels instead of one in the reference image can help reduce
noise and diminish errors in occlusion regions. Most of the
existing colorization methods do not solve the colorization
quality estimation problem. Traditional full-reference image
quality assessment metrics, e.g. PSNR, SSIM [4], etc., cannot
be directly adopted in our problem due to the lack of
ground-truth color images in practice.

To deal with both issues, i.e. colorization and coloriza-
tion quality estimation, in this paper, we propose a convolu-
tional neural network (CNN) based framework. The frame-
work is shown in Fig. 2. 1) In the colorization module, our
goal is to perform the left-to-right colorization to colorize the
input gray image YI using YR and CR of the color image
R as reference, and we propose a convolutional neural
network, named the colorization CNN, to estimate the color
map CI of the input gray image YI. 2) In the colorization
quality estimation module, our goal is to perform the right-
to-left colorization to colorize the gray map YR of R using
YI and the first-time colorization result CI as reference. We
propose to make use of the colorization CNN again without
any change of the network architecture for the second-time
colorization. To do so, we perform horizontal flips for YR,
YI and CI before inputing them to the colorization CNN
and the colorization output will be horizontally flipped
again to get the second-time colorization result CR0

. Then,
we evaluate the difference between CR0

and the ground-
truth color image CR to estimate the colorization quality.
For the inlier cases, we will concatenate YI and CI, transfer
the concatenated image into the RGB space, and output it
as the final colorization result. For the outlier cases, we will
output the reference image R as the final colorization result.

The overall structure of the colorization CNN is shown
in Fig. 3. 1) Our method performs weighted average of
colors of candidate pixels in the reference image to obtain
the color of each pixel in the input image. To compute the
weight volume that contains the weight values between all

pixels in the input image and their candidate pixels in the
reference image, firstly, we extract the deep features of the
input gray image and the gray map of the reference image
respectively by ResNet [5], and build a 4-D concatenated
feature volume. Then, to obtain higher weight values be-
tween each pixel and its more useful candidate pixels for
colorization, we propose an attention operation to estimate
the attention weights on different candidate pixels. Next,
to estimate the weight values with context information, we
use the 3-D regulation to compute the 3-D weight volume. 2)
After getting the weight volume, we perform the weighted
average operation using the estimated weight and the refer-
ence color map to get the rough colorization result. 3) The
rough colorization result may fail to have correct colors in
occlusion regions, because it is possible that none of the
candidate pixels in the reference image have correct colors
due to occlusion. So, we propose a color correction part
to correct the rough colorization result with the input gray
image as guidance.

Our insight of the colorization quality estimation module
is the symmetry property of colorization. In detail, the col-
orization quality should be similar between the left-to-right
colorization, i.e. colorizing the right gray image with the left
color image as reference, and the right-to-left colorization,
i.e. colorizing the left gray image with the right color one
as reference. Using the colorization CNN twice for the
colorization module and the colorization quality estimation
module can not only ensure that the colorization quality
within the two modules is similar but also help train the
colorization CNN to achieve higher accuracy.

Experimental results show that the proposed coloriza-
tion CNN largely outperforms the state-of-the-art coloriza-
tion algorithms in four datasets, including Scene Flow [6],
Cityscapes [7], Middlebury [8], and Sintel [9]. The coloriza-
tion quality estimation module can help estimate the col-
orization quality accurately, and thus the whole framework
can successfully divide the colorization results into inliers
and outliers.

Our contributions include: 1) For estimating the color of
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Fig. 3. The overall structure of the proposed colorization CNN. (Best viewed in color)

Fig. 4. Examples to show there usually exist several similar pixels
(marked in green) in the reference image that could provide correct
colors for a given pixel (marked in red) in the input gray image.

each pixel, we perform weighted average of colors of all
candidate pixels in the reference image so as to utilize more
pixels with correct colors. 2) In the proposed colorization
CNN, attention mechanism and 3-D regulation are used
for improving the accuracy. 3) We propose an improved
color correction structure for correcting colors in occlusion
regions. 4) We propose the colorization quality estimation
module, which uses the colorization CNN again without
any change by performing horizontal flips for the inputs
and outputs.

Our framework is an extension of our previous work
in [10]. Compared with [10], improvements made in this
paper are as follows. 1) The previous work in [10] only
proposes a colorization method, while in this paper we
also propose the colorization quality estimation module. 2)
The proposed framework combines both modules, i.e. the
colorization module and the colorization quality estimation

module, to generate high quality color images and avoid
outputting outlier colorization results. 3) In the colorization
CNN, we improve the color correction part so as to enhance
its robustness and applicability. More details are introduced
in Sec. 3 and 4.

2 RELATED WORK
2.1 Colorization
Colorization is an important problem in computer vision
and computer graphics. According to different kinds of
inputs, the existing colorization methods can be divided into
three categories, i.e. automatic colorization, scribble-based
colorization, and reference-based colorization.

In automatic colorization, e.g. [11] and [12], the input is
only a single gray image, and the methods directly colorize
the gray image without any reference. Due to the lack of the
reference color image, the methods usually need to learn
high-level features to generate reasonable colors for objects
within the image. However, the generated colors may be
quite different from the ground truth, e.g. a blue ball may
be colorized to be a red ball. And using these methods in our
problem is not proper because the methods fail to make use
of the reference color image, which provides much useful
color information.

In scribble-based colorization, e.g. [13] and [14], the
input includes a gray image and some color scribbles pro-
vided by the users. The scribbles are used as guidance for
colorizing the gray image. However, these methods are not
suitable for our problem as well, because the scribbles from
the users are not available in the camera system.

Reference-based colorization algorithms, e.g. [1], [2], [3],
[15], [16], [17], [18], are related to our problem. Welsh et al.
[15] assume that the pixels with the same luminance value
will have the same color, so they use the luminance value
as the feature to search for best-matching pixels between
the image pair. But, for dual-lens systems, pixels with the
same luminance value have different colors in many cases.
The failure of the assumption will lead to wrong colorization
results. Ironi et al. [2] propose to firstly colorize the searched
sparse matching pixels and then use a confidence computa-
tion method to mark low confidence pixels whose colors
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are propagated by neighboring colorized pixels with high
confidence. However, when using the method in the dual-
lens system, many non-occlusion pixels are marked as low
confidence pixels, and thus the colorized pixels with high
confidence are insufficient to be used for propagating the
color to low confidence pixels, especially in regions of edges
and small objects. Gupta et al. [3] extract features of super-
pixels to search for correspondences by feature matching
and use space voting for spatial consistency. But, the feature
of each super-pixel is the averaged value of features of all
pixels in the super-pixel. This will decrease the accuracy
of the matching for our problem, leading to wrongly col-
orized results, especially when the image contains small
objects/parts with complicated textures. Furusawa et al. [16]
propose a reference-based colorization algorithm for coloriz-
ing manga images. The assumption for manga images is not
always correct for general images. Thus, their results are not
always good enough for solving our problem.

Jeon et al. [1] solve the same problem with ours, i.e. col-
orization in the monochrome-color dual-lens system. They
propose a stereo matching based method to estimate the
dense correspondences between the pixels of the pair of
images. But, 1) the disparity estimation needs a lot of spatial
smoothing and filtering, which is costly in computation and
not a must-do for our problem. In addition, 2) the method
in [1] corrects the colors of occlusion regions by applying
spatial consistency of neighboring pixels over the whole
image. But, because they do not judge the regions of occlu-
sions where many pixels may have wrong colorization, the
spatial consistency operation will pollute the neighboring
correctly colorized pixels instead of correcting the errors
in some cases. 3) And the confidence term in the spatial
consistency operation is computed based on the super-pixel
segmentation results. However, the super-pixels may be
wrongly segmented, and pixels of different objects may be
included in the same super-pixel. This will lead to errors
after the spatial consistency operation.

Recently, some deep learning based methods are pro-
posed, e.g. He et al. [18] and Dong et al. [19]. He et al. [18]
propose a general reference-based colorization algorithm.
They do not assume the pair of images are shot by the
dual-lens system. Due to different assumptions from our
problem, they do not consider locality and spatial smooth-
ness and their loss minimizes the semantic differences of
unnatural colorization. The result looks natural but is not
always faithful to the ground truth colors. Dong et al. [19]
propose to train ResNet features of pixels and use the fea-
tures to search for best-matching pixels between the image
pair. However, the method of searching for best-matching
pixel will still fail to find correct correspondence in some
regions, especially in occlusion regions. In our colorization
CNN, for each pixel of the input image, we estimate the
weight values of its candidate pixels in the reference image
and perform weighted average of colors of all its candidate
pixels to get the estimated color. In this way, we make use
of multiple pixels in the reference image for colorizing each
pixel, and this can help reduce noise and errors.

The monochrome-color dual-lens system is very similar
with the stereo system. Another possible solution is to first
use a pure stereo matching method, e.g. [20], to estimate
the disparity between the images, and then copy the colors

of the corresponding pixels in the reference image to the
current pixels in the gray image. But, even if the estimated
disparity is exactly correct, this solution can hardly gener-
ate correct results in occlusion regions, because, for those
occluded pixels, their corresponding pixels in the reference
image are occluded and thus cannot provide correct colors
for reference.

Besides colorization, there exist some other enhancement
problems in the multiple-camera system, like video retarget-
ing [21], super resolution [22], [23], deblur [24], style transfer
[25] [26], flow estimation [27], and inpainting [28]. But, these
methods cannot be directly used for our problem.

2.2 Colorization quality estimation
Most existing colorization methods do not solve the col-
orization quality estimation problem, and they will always
output the colorization results no matter they are outliers or
inliers.

Traditional full-reference image quality assessment met-
rics, e.g. PSNR, SSIM [4], etc., need the ground-truth image
at hand as the reference. They can hardly be used in our
case. Although in the training stage, they can be used to
evaluate the average accuracy of each colorization method
because the ground-truth color images are available, in
practice, our framework needs to estimate the colorization
quality of each result and judge whether it belongs to the
outliers without the ground-truth color images at hand.

There exist some no-reference image quality assessment
metrics, e.g. BRISQUE [29], BLISS [30], etc. But they are
designed to evaluate the signal noise ratio of the images,
e.g. distortions caused by blur, noise, and compression. Due
to different goals, the no-reference metrics are not proper for
our problem either.

3 COLORIZATION CNN
The pipeline of the colorization CNN is shown in Fig. 3.
First, we generate the weight volume, which contains the
weight values between each pixel in the input image and
its candidate pixels in the reference image. And the weight
volume is then used for performing the weighted average
operation to obtain the rough colorization result. Second,
in the color correction part, we jointly learn to correct the
wrongly colorized pixels of the rough result using the input
gray image as guidance.

The goal of the proposed weighted average operation is
to utilize more useful pixels in the reference image for col-
orizing each pixel. The challenges are that 1) in the weighted
average operation, if the weight values of the candidate
pixels with incorrect colors are large, noise or even errors
will be introduced to the colorization results. We thus pro-
pose an attention operation to reduce the noise/errors. The
attention mechanism has been successfully used in various
problems, e.g. text classification [31], and visual question
answering [32]. It could help the network focus more on
useful information for improving the prediction accuracy.
We adopt the attention mechanism to pay more attentions
on those useful candidate pixels in the reference image. This
will help obtain higher weight values of the useful candidate
pixels and reduce noise/errors in the colorization results. 2)
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In addition, the weight volume is estimated based on the
deep features of the input images. However, the features are
not perfect all the time, so, the 3-D regulation [20], which
learns with context information, is performed to generate
the weight volume.

Colorization by the weighted average operation may
fail to have correct colors in occlusion regions, because it
is possible that none of the candidate pixels in the refer-
ence image have correct colors due to occlusion. To correct
wrongly colorized pixels, we propose the color correction
part in our network. We share similar insights with [14]
that neighboring pixels with similar gray intensities should
have similar colors, and the input gray image YI could
provide guidance of spatial color consistency. Our method
is based on the deep joint filter [33]. Our difference from
[33] is that 1) we use ResNet [5] instead of traditional 2-D
convolution due to good performances of ResNet in related
problems. 2) And we learn the residue between the ground
truth color image and the rough colorization result, because
learning the residue map has proven to be more effective
in related works, e.g. single image super resolution [34].
Last, 3) we use two ResNet sub-nets instead of three ResNet
sub-nets [10] to build the network, which could improve
the robustness and applicability of the model. Our previous
work in [10] extracts features of both the rough result C0

and YI and concatenates them. In this paper, we extract
the feature of YI, i.e. GY , and concatenate the rough result
C0 with GY . The reason is that our goal is to learn the
color residue between C0 and the ground-truth colors, and
transferring C0 to a ResNet feature, which in done in [10],
is not a must-do step. By directly using the rough result C0

for the concatenation, the robustness and applicability of the
network is improved.

3.1 Formulation
Given the color image R 2 Rh⇥w⇥3 from the color camera
as reference, we want to predict the color map CI of the in-
put gray image YI 2 Rh⇥w from the monochrome camera.
We use the YCbCr color space in this paper. The Y channel
map of R is denoted as YR. The Cb and Cr channel maps
are denoted as CR. All parameters of the deep network are
shared for predicting the Cb and Cr channel maps.

First, for each pixel (j, i), we propose to estimate the
rough colorization result C

0

j,i by the weighted average of
colors of its candidate pixels in the reference image, i.e.

C
0

j,i =
d�1X

k=0

Wj,i,kC
R
j,i+k. (1)

The range of candidate pixels for each pixel (j, i) is de-
fined as the pixels with the same vertical position, i.e. j,
and the horizontal positions range from i to i + d � 1,
where the hyper-parameter d is the maximum disparity.
It is because the dual-lens of smart phones are calibrated
and the corresponding pixels should be in the same line
but different columns due to disparity. Pixels in the defined
range have high probability to provide correct colors. Wj,i,k

is the weight values between pixel (j, i) of the input gray
image and pixel (j, i + k) of the reference image, and the
weight volume W 2 Rh⇥w⇥d contains the weight values of
all pixels and their candidate pixels.

Second, we use the input gray image YI as guidance to
correct the rough result C

0
by

CI = C0 + �(C0,YI), (2)

where � denotes the operation of learning the color residue
in the color correction part.

3.2 Weight volume generation
The weight volume W 2 Rh⇥w⇥d is estimated using the
weight volume generation module, as shown in Fig. 3. The
inputs include the input gray image YI and the gray map
of the reference image YR.

First, we extract the deep features FI 2 Rh⇥w⇥n and
FR 2 Rh⇥w⇥n of YI and YR respectively by a ResNet,
named ResNet1 in this paper. The hyper-parameter n is the
filter number.

Then, for each pixel (j, i), we concatenate its features
FI

j,i with features of each candidate pixel FR
j,i. And the

concatenated features of all pixels and their candidate pixels
form the 4-D feature volume VF 2 Rh⇥w⇥d⇥2n, where

VF
j,i,k = Concat(FI

j,i,F
R
j,i). (3)

Next, the attention operation, which is achieved by using
two 3-D convolution layers, is performed to obtain the
attention volume A from the feature volume VF. Each
element of A, i.e. Aj,i,k, is the attention weight between
features of pixel (j, i) and its candidate pixel (j, i + k). The
attention volume A is used to refine the feature volume VF

by

VA
j,i,k,p =

(
VF

j,i,k,p, p = 0 : n� 1

Aj,i,kVF
j,i,k,p, p = n : 2n� 1

(4)

Next, the 3-D regulation, which is proposed by [20] to learn
with context, is performed to estimate the weight volume
W from the attention weighted feature volume VA.

Once W is obtained, the rough colorization result can be
obtained by Eq. 1.

3.3 Color correction
Our goal is to use the input gray image YI as guidance to
correct the rough colorization result C0, which may contain
wrongly colorized pixels due to occlusions.

As shown in Fig. 3, the input gray image YI is fed into
a ResNet, named ResNet2, to get its feature GY . Then, the
rough colorization result C0 and GY are concatenated to
form the feature map G, which is fed into another ResNet,
named ResNet3, to get the residue color map �(C0,YI). By
adding C0 and the residue color map �(C0,YI), the final
colorization result CI is obtained. The joint learning of the
color residue can be seen as a high dimension joint filter.

3.4 Network architecture
We show our network architecture in Fig. 3. The detailed
layer information is shown in Table 1.

1) In the weight volume generation module, ResNet1 has
18 convolution layers in total. The first layer is with 5 ⇥ 5
kernel and stride 2. Here, we downsample the data with
stride 2 to reduce memory cost. The resolution is recovered
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TABLE 1
Summary of the architecture of the colorization CNN. Each 2-D or 3-D

convolutional layer represents a block of convolution, batch
normalization and ReLu.

Layer Description Output Tensor Dim.

Input gray image Y h ⇥ w
Gray map of reference Image YR h ⇥ w

ResNet1

1 5 ⇥ 5 conv, n feat., stride 2 h
2 ⇥ w

2 ⇥ n
2 3 ⇥ 3 conv, n feat. h

2 ⇥ w
2 ⇥ n

3 3 ⇥ 3 conv, n feat. h
2 ⇥ w

2 ⇥ n
add layer 1 and 3 feat. (residue connection) h

2 ⇥ w
2 ⇥ n

4-17 (repeat layers 2,3 and residual connection)⇥7 h
2 ⇥ w

2 ⇥ n
18 3 ⇥ 3 conv, n feat., no ReLu/BN h

2 ⇥ w
2 ⇥ n

Attention

19 3-D conv,1 ⇥ 1 ⇥ 1,n feat.,Sigmoid,no BN/ReLu h
2 ⇥ w

2 ⇥ d
2 ⇥ n

20 3-D conv,1 ⇥ 1 ⇥ 1,1 feat.,Sigmoid,no BN/ReLu h
2 ⇥ w

2 ⇥ d
2

3-D regulation

21 3-D conv, 3 ⇥ 3 ⇥ 3, n feat. h
2 ⇥ w

2 ⇥ d
2 ⇥ n

22 3-D conv, 3 ⇥ 3 ⇥ 3, n feat. h
2 ⇥ w

2 ⇥ d
2 ⇥ n

23 3-D conv, 3 ⇥ 3 ⇥ 3, 2n feat., stride 2 h
4 ⇥ w

4 ⇥ d
4 ⇥ 2n

24 3-D conv, 3 ⇥ 3 ⇥ 3, 2n feat. h
4 ⇥ w

4 ⇥ d
4 ⇥ 2n

25 3-D conv, 3 ⇥ 3 ⇥ 3, 2n feat. h
4 ⇥ w

4 ⇥ d
4 ⇥ 2n

26-34 (repeat layer 23, 24, 25)⇥3 h
32 ⇥ w

32 ⇥ d
32 ⇥ 2n

35 3 ⇥ 3 ⇥ 3, 3-D trans conv, 2n feat., stride 2 h
16 ⇥ w

16 ⇥ d
16 ⇥ 2n

add layer 35 and 31 (residual connection) h
16 ⇥ w

16 ⇥ d
16 ⇥ 2n

36 3 ⇥ 3 ⇥ 3, 3-D trans conv, 2n feat., stride 2 h
8 ⇥ w

8 ⇥ d
8 ⇥ 2n

add layer 36 and 28 (residual connection) h
8 ⇥ w

8 ⇥ d
8 ⇥ 2n

37 3 ⇥ 3 ⇥ 3, 3-D trans conv, 2n feat., stride 2 h
4 ⇥ w

4 ⇥ d
4 ⇥ 2n

add layer 37 and 25 (residual connection) h
4 ⇥ w

4 ⇥ d
4 ⇥ 2n

38 3 ⇥ 3 ⇥ 3, 3-D trans conv, n feat., stride 2 h
2 ⇥ w

2 ⇥ d
2 ⇥ n

add layer 38 and 22 (residual connection) h
2 ⇥ w

2 ⇥ d
2 ⇥ n

39 3 ⇥ 3 ⇥ 3, 3-D trans conv, 1 feat., no ReLu/BN h ⇥ w ⇥ d
ResNet2

40 5 ⇥ 5 conv, n feat. h ⇥ w ⇥ n
41-57 repeat layers 2-18 h ⇥ w ⇥ n

ResNet3

58-74 repeat layers 40-56 h ⇥ w ⇥ n
75 3 ⇥ 3 conv, 1 feat. (no ReLu, BN) h ⇥ w

in the last layer of the 3-D regulation. The following 16
layers are 8 repeated residue blocks and each residue block
consists of 2 convolution layers with 3 ⇥ 3 kernel and a
residue connection. BatchNorm layers and ReLu layers are
added after each of the 17 convolution layers. The 18th layer
is a convolution layer with 3⇥ 3 kernel and no BatchNorm
layer or ReLu layer is added. The filter number n of the
18 layers of ResNet1 is a hyper-parameter, which is set as
32 in this paper. The attention operation consists of two 3-
D convolution layers, i.e. layer 19 and 20 in Table 1. The
kernel of both layers is 1 ⇥ 1 ⇥ 1. The filter numbers are
n and 1, respectively. Sigmoid layer is added after layer
19 and 20. The Sigmoid layer ensures that the attention
weight ranges from 0 to 1. In the 3-D regulation operation,
deep encoder-decoder designs are used, i.e. we encode
sub-sampled feature maps, followed by up-sampling in a
decoder. We form the 3-D regulation network with four
levels of sub-sampling. For each encoder level, we apply
two 3 ⇥ 3 ⇥ 3 convolutions. To up-sample the volume in
the decoder, we employ a 3-D transposed convolution. In
addition, we add each higher resolution feature map before
up-sampling. Readers may refer to [20] for more details. 2)
In the color correction part, we use two ResNets, named
ResNet2 and ResNet3. They have similar network structure
with ResNet1. The difference between ResNet2 and ResNet1
is that in the first layer of ResNet2, the stride is set as 1
instead of 2. The difference between ResNet3 and ResNet2 is
that in the last layer the filter number is 1 and no BatchNorm
layer or ReLu layer is added. The parameters of ResNet2
and ResNet3 are trained separately.

TABLE 2
Two setups of the colorization benchmark. We simulate the

monochrome-color dual-lens system by adding different distortions to
the color image and the monochrome image. In the setup1, we add
signal dependent Gaussian noise with different standard deviations,

where  represents the noise-free signal intensity [35]. In the setup2, to
simulate different resolutions of the monochrome and color images, we

down-sample the color image with the ratio of 0.5 using Bicubic
interpolation before adding the noise. In the enhancement step, we

resize the reference color image to the original resolution using Bicubic
interpolation before performing the colorization.

noise std. color camera monochrome camera
Setup1 0.03

p
 0.01

p


Setup2 downsample+0.07
p
 0.01

p


4 COLORIZATION QUALITY ESTIMATION

The colorization qualities of the proposed colorization mod-
ule using the colorization CNN vary a lot for different
inputs. Most of the results are perfect, while some others
have wrongly colorized pixels due to occlusions, large dis-
placement, etc.

A practical solution is to automatically estimate the
colorization quality of each result and then adaptively judge
whether the result is an outlier or an inlier, i.e. whether the
colorization quality is good enough. For the inlier cases, the
colorization result can be output as the final result. For the
outlier cases, we could use the color image from the color
camera as the final result for substitution, which has lower
quality but correct colors.

It is challenging for estimating the colorization quality of
the colorization result due to the lack of ground-truth color
map in practice.

Our insight for solving this problem is the symmetry
property of colorization, i.e. the colorization quality should
be similar between the left-to-right colorization and right-
to-left colorization. So, after we perform the left-to-right
colorization by the colorization CNN in the colorization
module and get the colorization result CI of the input image
I, in the colorization quality estimation module, we propose
to perform the right-to-left colorization to colorize the gray
map of the reference image YR using the image I as refer-
ence, where I = {YI,CI}. In the second-time colorization,
we perform horizontal flips for the inputs and outputs
so that the colorization CNN can be used again without
any change. In this way, the color map of the reference
image CR can be used as the ground-truth to estimate the
colorization quality of the second-time colorization result
CR0

, and we use the quality of CR0
to estimate the quality

of the colorization. The pipeline is shown in Fig. 2.

TABLE 3
The Pearson Linear Correlation Coefficients (LCC) between the

qualities of the colorization results of the colorization module and the
colorization quality estimation module on the four datasets. The results
are evaluated using PSNR and SSIM, respectively. CT, MB, ST, and SF

are short for the datasets of Cityscapes, Middlebury, Sintel, and
SceneFlow, respectively.

CT MB ST SF
PSNR 0.9130 0.9426 0.9422 0.9285
SSIM 0.9284 0.9444 0.9515 0.9317

We also verify the effectiveness of the colorization qual-
ity estimation module by testing the correlation between the
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Fig. 5. PSNR values (dB) of results of the colorization module and the colorization quality estimation module in the four datasets, i.e. Cityscapes
[7], Middlebury [8], Sintel [9], and SceneFlow [6]. We randomly select 400 images from Cityscapes, Sintel, and SceneFlow due to the large number
of images.

results of the colorization module, i.e. CI, and the results
of the colorization quality estimation module, i.e. CR0

,
among the training datasets. The PSNR values of randomly
selected images in different datasets are shown in Fig. 5.
The Pearson Correlation Coefficients between the qualities
of CI and CR0

are shown in Table 3. The statistics show
that the qualities of CI and CR0

are strongly correlated and
provide strong support for the proposed colorization quality
estimation method.

Thus, in our method, we set a threshold T = 42 dB in our
paper, for the PSNR value of CR0

. If the PSNR value of CR0

is lower than T , we see the corresponding colorization result
CI of the colorization module as an outlier. Otherwise, the
colorization result CI is treated as an inlier. And for the
outlier cases, we use the original color images R from the
color camera as the output color image. We set T = 42
because images with 42 dB or higher can usually be seen as
high quality images.

5 EXPERIMENTS

5.1 Datasets
We use four popular stereo datasets in our experiments, i.e.
Cityscapes [7], Middlebury [8], Sintel [9], and SceneFlow [6].
The image pairs in these datasets are captured by dual color
lens at the same time. For realistic simulations, within each
image pair, we follow [1] to de-color one image. The de-
colored result is used as the input gray image, and the other
color image is used as the input color image. In addition,
we imitate the light-efficiency differences between the color
and monochrome cameras by adding different distortions
to the input gray images and the reference color images.
We configure two different setups for this experiment. The
details are shown in Table 2.

5.2 Implementation details
The proposed deep convolutional network is implemented
with TensorFlow. We train our entire model in an end-to-
end way from a random initialization with 15 epochs. All
models are optimized with RMSProp [36] and a constant
learning rate of 0.001. We train with a batch size of 1 using
a 256 ⇥ 512 randomly located crop from the input images.
We train the network on the dataset of Scene Flow, which
contains 35,454 training and 4,370 testing images, on an Intel
I7 and an NVIDIA Titan-X GPU. In the training, the loss
function L is defined as

L = MSE(CI,CI⇤) +MSE(CR0
,CR), (5)

where the mean squared error (MSE) is used for measuring
the quality of the prediction results of the colorization
module CI and the colorization quality evaluation module
CR0

based on the corresponding ground-truth color maps,
i.e. CI⇤ and CR. When testing the performance on the other
three datasets, we directly use the model trained on Scene
Flow for cross-validation.

The colorization results may have wrong colors at the
image boundaries. At image boundaries, for pixels of the
input gray image, the corresponding pixels of the reference
image do not exist, or the appearances of the corresponding
pixels are quite different. Both reasons result in the failure
colorization in some cases. A practical solution we use is to
cut off 5% boundary regions of the colorization results.

5.3 Experiment I: Comparison with other colorization
methods

Comparison algorithms: First, we compare with the state-
of-the-art reference-based colorization algorithms, i.e. the
methods of Welsh et al. [15], Ironi et al. [2], Gupta et al. [3],
Jeon et al. [1], Furusawa et al. [16], He et al. [18] and Dong
et al. [19]. In addition, we compare with two state-of-the-art
deep learning based automatic colorization algorithms, i.e.
the methods of Zhang et al. [11] and Iizuka et al. [12], which
could automatically colorize monochrome images without
any reference images. The methods of Welsh et al. [15],
Ironi et al. [2], and Gupta et al. [3] do not assume short-
baseline between the pair of images. So, for each pixel in the
monochrome image, the search region is the whole reference
image. For fair comparison, we re-implement the methods
and make the search range the same as our method, i.e.
the candidate pixels are with the same vertical position and
their horizontal positions range from i to i+d�1 as defined
in Sec. 3.1. The method of Furusawa et al. is designed for
colorizing manga images while we aim at general images.
When performing the method of Furusawa et al., the panel
is set as the whole reference image.

Results: We show the quantitative results in Tables 4 and
5. As shown, our method largely outperforms the compari-
son methods. And some qualitative colorization results are
shown in Figs. 6, 7, and 8. As shown in Fig. 6, Welsh et
al.’s method does not have good performance, because their
assumption, i.e. pixels with the same grayscale intensity will
have the same color value, is not true for many images. So,
some regions are wrongly colorized. Ironi et al.’s method
has problems at edges and small objects because many
unoccluded pixels are wrongly marked as occluded pixels,
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(a) Input gray and color images. (b) Welsh et al. (c) Ironi et al.

(d) Gupta et al. (e) Our result. (f) Ground truth.

(a) Input gray and color images. (b) Welsh et al. (c) Ironi et al.

(d) Gupta et al. (e) Our result. (f) Ground truth.

Fig. 6. Examples to compare the colorization results of Welsh et al. [15], Ironi et al. [2], Gupta et al. [3], and our colorization method. The region
marked with the red box is shown in the bottom two rows. As shown, the comparison methods fail to recover correct colors in the marked region.
This example is under Setup1 in Table 2.

TABLE 4
Average PSNR values (dB) of different colorization methods in four

datasets under Setup 1 and 2 in Table 2. CT, MB, ST, and SF are short
for the datasets of Cityscapes, Middlebury, Sintel, and SceneFlow,

respectively.

PSNR(dB) under Setup1 PSNR (dB) under Setup2
CT MB ST SF CT MB ST SF

Welsh 37.89 30.28 34.94 30.12 35.02 29.63 32.64 29.81
Ironi 38.45 32.98 36.06 31.24 35.53 30.37 32.45 30.51

Gupta 38.09 31.04 35.45 29.65 34.51 30.74 33.27 29.70
Jeon 39.33 36.80 36.12 31.32 35.24 34.68 33.89 31.71

Furusawa 34.74 30.86 32.13 28.44 32.91 29.52 32.01 27.07
He 39.05 35.63 36.28 32.15 36.13 33.38 33.17 31.26

Zhang 29.38 29.12 29.34 17.26 29.57 28.41 29.44 18.56
Iizuka 31.30 29.19 33.97 21.02 31.39 28.42 34.02 23.13
Dong 40.86 38.12 39.26 41.35 40.03 36.72 38.47 40.02
Ours 44.87 42.53 44.46 45.71 43.65 40.66 43.12 44.47

and thus the colorized pixels of unoccluded pixels are not
enough for color propagation. Gupta et al.’s method does
not perform well, especially for objects with complicated
textures. It is because the features of each superpixel are
obtained by averaging the feature values of all pixels in
the superpixel, which will decrease the accuracy of corre-
spondence searching for our problem. Jeon et al.’s method
has better results than the other comparison methods. But
they do not deal with the occlusion regions well. As shown

TABLE 5
Average SSIM values of different colorization methods in four datasets

under Setup 1 and 2 in Table 2.

SSIM under Setup1 SSIM under Setup2
CT MB ST SF CT MB ST SF

Welsh 0.897 0.906 0.795 0.813 0.849 0.877 0.756 0.767
Ironi 0.897 0.940 0.918 0.890 0.778 0.714 0.812 0.743

Gupta 0.948 0.896 0.933 0.869 0.906 0.893 0.905 0.750
Jeon 0.953 0.958 0.943 0.927 0.911 0.950 0.922 0.900

Furusawa 0.841 0.860 0.794 0.795 0.825 0.782 0.728 0.734
He 0.951 0.949 0.948 0.919 0.928 0.947 0.931 0.889

Zhang 0.460 0.746 0.687 0.279 0.455 0.752 0.688 0.303
Iizuka 0.757 0.677 0.852 0.411 0.751 0.688 0.852 0.414
Dong 0.977 0.980 0.971 0.982 0.960 0.964 0.961 0.965
Ours 0.987 0.988 0.988 0.992 0.983 0.980 0.980 0.987

in Fig. 7, there are occlusions between the girl and the
rock behind her, and the results of their method are not
correct. Furusawa et al.’s result, as shown in Fig. 8, is
not good enough because the method assumes that the
images are manga images but in our problem the images
are general images. He et al.’s results, as shown in Fig. 9,
could not achieve high PSNR/SSIM values because they do
not consider locality and spatial smoothness of the corre-
spondence. This causes many inconsistent correspondence
matches, which will cause wrong colorization. In addition,
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(a) The input pair of gray and color images. (b) Result of Jeon et al. (c) Our result. (d) Ground truth.

Fig. 7. Examples to compare the colorization results of Jeon et al. [1] and our colorization method. The region marked with the red box is shown in
the second row. As shown, Jeon et al.’s method fails to recover correct colors in the marked region. This example is under Setup2 in Table 2.

(a) Input gray and color images. (b) Zhang et al. (c) Iizuka et al.

(d) Furusawa et al. (e) Our result. (f) Ground truth.

(a) Input gray and color images. (b) Zhang et al. (c) Iizuka et al.

(d) Furusawa et al. (e) Our result. (f) Ground truth.

Fig. 8. Examples to compare deep learning based automatic colorization algorithms, i.e. Zhang et al. [11] and Iizuka et al. [12], manga image
colorization algorithm, i.e. Furusawa et al. [16], and our algorithm. As shown, due to not using the reference images as guidance, the recovered
colors of Zhang et al. and Iizuka et al. are not correct in most regions. The method of Furusawa et al. fails in most regions too, because the
assumption of manga images is not true for general real-world images. The examples are from Setup2 in Table 2.

the perceptual loss minimizes the semantic differences of
unnatural colorization. The result looks natural but is not
always faithful to the ground truth colors, e.g. some small
regions have different colors from neighboring regions, but
they are wrongly colorized to have similar colors with
neighboring regions. The results of Dong et al. have lower
PSNR/SSIM values than ours because they share similar
pipeline with the traditional colorization methods, i.e. ex-
tracting feature of each pixel and using the feature to search
for the best-matching pixel. This pipeline fails to make use
of multiple pixels with correct colors in the reference image.
In addition, the proposed 3-D regulation module in the

colorization CNN could improve the weight estimation with
the help of spatially neighboring pixels, while Dong et al.
fail to make use of spatial consistency. An example is shown
in Fig. 10. The colorization qualities of the state-of-the-art
CNN-based automatic colorization methods [11], [12] are
worse than most of the reference-based mathods and ours.
As shown in Fig. 8, their results have wrong colors in most
regions. It is because they are solving different problems.
The input in these methods is only one single gray image.
The reference color image, which could provide much useful
color information during the colorization, is not utilized at
all.
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(a) The input pair of grayscale and color images. (b) Result of He et al. (c) Our result. (d) Ground truth.

Fig. 9. Examples to compare the colorization results of He et al. [18] and our method.

(a) The input pair of grayscale and color images. (b) Result of Dong et al. (c) Our result. (d) Ground truth.

Fig. 10. Examples to compare the colorization results of Dong et al. [19] and our colorization method. The marked region with red box is shown in
the following rows. As shown, Dong et al. fail to recover correct colors at the marked region while our results have correct colors.

(a) The input pair of grayscale and color images. (b) Our result.

Fig. 11. Examples of our colorization method for real monochrome-color
dual-lens images in low light conditions.

The average processing time of the comparison meth-
ods and our method for images with different resolutions
is shown in Table 7. Among the processing parts of our
method, the 3D U-Net for the 3-D regulation is the most
computationally complex processing part, costing 76.4% of
the overall processing time. The color correction part costs
10.3% of the overall processing time, and the ResNet deep

TABLE 6
Ablation study.

PSNR(dB) SSIM
CT MB ST SF CT MB ST SF

Stereo matching model 22.17 24.51 21.72 25.31 0.755 0.697 0.700 0.763
No weighted average 39.84 38.37 40.14 40.82 0.965 0.962 0.975 0.979

No attention 41.91 40.92 41.85 42.02 0.975 0.975 0.979 0.979
No color correction 36.04 37.55 36.05 35.98 0.954 0.955 0.957 0.959

Dong et al. [10] 44.26 41.94 43.88 45.18 0.982 0.981 0.983 0.988
Simple average 16.51 18.38 13.63 18.42 0.641 0.644 0.519 0.640

Ground-truth disparity 35.48 33.82 34.24 34.84 0.875 0.808 0.823 0.848
Only colorization module 44.74 42.35 44.32 45.58 0.986 0.987 0.987 0.990

Ours 44.87 42.53 44.46 45.71 0.987 0.988 0.988 0.992

feature extraction and attention parts costs 13.3% of the
overall processing time. So, the acceleration should focus
on optimizing the 3D U-Net part in the future. To the best
of our knowledge, there are some standard acceleration
solutions. Possible solutions include 1) network pruning
methods like [37], 2) coarse-to-fine processing like [38], and
3) in our current implementation, we only use one GPU. In
the future, multi-GPUs could be used for acceleration. In
short, our work provides a good start point and baseline for
the research and industry communities.

We also show some qualitative colorization results for
the input images captured by the real monochrome-color
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(a) The input pair of gray and color images. (b) Result of Welsh et al. (c) Result of Irony et al.

(d) Result of Gupta et al. (e) Result of Jeon et al. (f) Result of Dong et al. (g) Result of Furusawa et al.

(h) Result of Zhang et al. (i) Result of Iizuka et al. (j) Result of He et al. (k) Result of our method.

(l) The input pair of gray and color images. (m) Result of Welsh et al. (n) Result of Irony et al.

(o) Result of Gupta et al. (p) Result of Jeon et al. (q) Result of Dong et al. (r) Result of Furusawa et al.

(s) Result of Zhang et al. (t) Result of Iizuka et al. (u) Result of He et al. (v) Result of our method.

Fig. 12. Examples to compare the colorization results of all the comparison methods and our colorization method. The region marked with the red
box is enlarged in the bottom three rows. The input images are captured by the real monochrome-color dual-lens system of Huawei P9 phone.
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(a) The input pair of gray and color images. (b) Result of Welsh et al. (c) Result of Irony et al.

(d) Result of Gupta et al. (e) Result of Jeon et al. (f) Result of Dong et al. (g) Result of Furusawa et al.

(h) Result of Zhang et al. (i) Result of Iizuka et al. (j) Result of He et al. (k) Result of our method.

(l) The input pair of gray and color images. (m) Result of Welsh et al. (n) Result of Irony et al.

(o) Result of Gupta et al. (p) Result of Jeon et al. (q) Result of Dong et al. (r) Result of Furusawa et al.

(s) Result of Zhang et al. (t) Result of Iizuka et al. (u) Result of He et al. (v) Result of our method.

Fig. 13. Examples to compare the colorization results of all the comparison methods and our colorization method. The region marked with the red
box is enlarged in the bottom three rows. The input images are captured by the real monochrome-color dual-lens system of Huawei P9 phone.
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dual-lens system of Huawei P9 phone in Figs. 12 and
13. As shown, our method can obtain better results than
all the comparison methods. Some colorization results of
images captured by the real dual-lens system under low-
light conditions are also shown in Fig. 11.

5.4 Experiment II: Ablation study
The ablation study compares a number of different model
variants and justifies our design choices. We wish to eval-
uate the importance of the key ideas in this paper: the
weighted average of colors of candidate pixels, the attention
operation, and the color correction module. The datasets
used in this experiment are under Setup1 in Table 2. All the
models are trained on the Scene Flow dataset, and tested
on the Cityscapes, Middlebury, and Sintel datasets. Table 6
shows the summary performance of different models.

First, we study the differences between our problem and
stereo matching. As mentioned in Sec. 2, it is possible to first
estimate the disparity between the input image and refer-
ence image, and then warp the colors of the reference image
according to the estimated disparity to get the colorization
result. We implement the state-of-the-art stereo matching
method [20], and the results are shown in ‘Stereo matching
model’ of Table 6. Specifically, compared with our model,
this model does not have the operation of weighted average,
color correction and the attention operation. In addition, it is
trained using the ground truth disparity values. As shown
in Table 6, its performance is much lower than our model.
The reason is that it aims at estimating disparities, but, in
the reference image, pixels with wrong disparity values may
have correct colors, especially in textureless and repeated
texture regions. Moreover, pixels with correct disparity val-
ues may have wrong colors, especially in occlusion regions.
In short, the problems of colorization and stereo matching
are different and therefore need different methods to solve
them.

Second, we evaluate the contribution of the weighted
average operation. In ‘No weighted average’, instead of
weighted average, we perform soft argmax after getting the
weight volume to obtain the best-matching candidate pixel
for each pixel, and copy its color as the rough colorization
result. As shown in Table 6, its performance is lower than
our model, because the weighted average operation could
make use of colors of more pixels in the reference image.

Third, we evaluate the contribution of the attention
operation. In ‘No attention’, we do not perform the attention
operation and directly use the concatenated feature volume
as the input of the 3-D regulation. The results are not as
good as our model either.

Fourth, we evaluate the contribution of the color cor-
rection module of our model. In ‘No color correction’, we
output the rough colorization result directly as the final
result, without performing the color correction module. As
shown, the performance decreases a lot without the color
correction. It is because the input gray image can provide
guidance of spatial color consistency. Using the guidance,
the color correction module could correct wrongly colorized
pixels by their neighboring pixels.

Fifth, we evaluate the contribution of the improved parts
of our method comparing with the conference version of

our paper, i.e. Dong et al. [10]. The results of the conference
version are shown in the ‘Dong et al. [10]’ term. As shown,
our method achieves higher colorization accuracy due to
two main revisions. 1) We improve the color correction part
in the colorization CNN and 2) the colorization CNN is
used twice in the colorization module and the colorization
quality estimation module respectively. To better analyze
the contribution of each of the two revisions, we also use the
improved color correction part to perform the experiment
without the colorization quality estimation module, and the
results are shown in the ‘Only colorization module’ term.
From these results, we notice that both revisions have posi-
tive effects on the performance. The reasons are that 1) in the
color correction part, our goal is to learn the color residue
between C0 and the ground-truth colors, as shown in Fig. 3.
Transferring C0 to a ResNet feature, which is done in [10], is
not a must-do step. Adding the unnecessary ResNet subset
into the whole framework will increase the difficulty for
training and thus have a negative effect on the prediction
accuracy. 2) Comparing with Dong et al. [10], in the training
step of our method, we use both the colorization module
and the colorization quality estimation module to help train
the colorization CNN. So the colorization CNN is trained
with more data, which helps improve the performance.

Sixth, we perform an ablation study to use the simple
average operation instead of the weighted average opera-
tion for the colorization. In detail, for each pixel in the input
image, we use the simple average operation to average the
colors of all the candidate pixels within the search range of
the reference image and use the simple average result as
the colorization result. The results are shown in the ‘simple
average’ term of Table 6. As shown, the accuracy is very low.
It is because, the search range in the reference image consists
of more than one hundred pixels (the search range d is set
as 20% of image width in this paper). Although among the
set of candidate pixels, there may exist multiple pixels with
correct colors, most of them have wrong colors and thus
the simple average operation will generate wrong colors in
most cases, leading to low PSNR and SSIM values.

Last, we use the ground-truth disparity for colorization,
i.e. we use the ground-truth disparity to warp the reference
color image and directly copy the color of pixels of the
warped color image for the corresponding pixels of the
input gray image. As shown in the ‘ground-truth disparity’
term of Table 6, the accuracy is even lower than many
colorization methods, e.g. Jeon et al., He et al., Dong et
al., and ours in Tables 4, 5. The reason is that although
in non-occlusion regions, the ground-truth disparity can
always help obtain correct colors, in occlusion regions, for
pixels of the input image, their corresponding pixels in
the reference image are missing due to occlusions and the
computed corresponding pixels in the reference image using
the ground-truth disparity belong to different objects and
are usually with different colors. The errors in occlusion
regions lead to low PSNR and SSIM values.

5.5 Experiment III: Inlier and outlier judgement

As described in Sec. 4, we estimate the colorization qualities
of the colorization results of the colorization module and
divide them into inlier and outlier colorization results. The



PREPRINT VERSION 14

TABLE 7
Processing time (ms) of different methods for images with different resolutions. The non-learning based methods including Welsh [15], Ironi [2],

Gupta [3] and Jeon [1] are run on CPU, and the deep learning based methods including Furusawa [16], He [18], Zhang [11], Iizuka [12], Dong [19]
and Ours are run on GPU.

Welsh Ironi Gupta Jeon Furusawa He Zhang Iizuka Dong Ours
2048 ⇥ 1600 2096 18038 183582 354263 31017 13514 6853 4826 577 3062
1024 ⇥ 800 1179 4249 36184 93662 8149 3184 1816 1425 153 726
512 ⇥ 400 530 969 9249 23861 2361 713 503 358 58 229
256 ⇥ 200 267 283 2495 6018 636 154 124 83 19 77
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Fig. 14. The distributions of PSNR values of inlier colorization results over the four datasets, i.e. Cityscapes [7], Middlebury [8], Sintel [9], and
SceneFlow [6].

TABLE 8
The percentage of inlier and outlier colorization results of the four

datasets, i.e. Cityscapes, Middlebury, Sintel, and Scene Flow, using the
colorization CNN. The inliers and outliers are judged according to our

colorization quality estimation module.

Cityscapes Middlebury Sintel Scene Flow
Percentage of inliers 99.98% 86.36% 88.82% 99.06%

Percentage of outliers 0.02% 13.64% 11.18% 0.94%

TABLE 9
Average PSNR (dB) values of inlier and outlier colorization results of

the four datasets, i.e. Cityscapes, Middlebury, Sintel, and Scene Flow.

Cityscapes Middlebury Sintel Scene Flow
Average PSNR of inliers 44.79 43.25 45.34 45.66

Average PSNR of outliers 40.71 37.13 36.71 43.30

percentage of inliers and outliers over the four datasets, i.e.
Cityscapes, Middlebury, Sintel, and Scene Flow, is shown
in Table 8. As shown, most colorization results are inliers,
which reflects the effectiveness of the proposed colorization
module. In addition, the percentage of inliers and outliers
varies among different datasets. It is because the images in
different datasets have different levels of occlusions. More
occlusions usually lead to lower accuracy.

Besides Table 8, we calculate the average PSNR values
of inlier and outlier colorization results of the four datasets,
which is shown in Table 9. As shown, the inliers have
very high PSNR values on average while the outliers have
much lower PSNR values. This reflects that the proposed
colorization quality estimation module is effective to judge
whether the colorization result is an inlier or an outlier.

From Table 8 and 9, we can find that the combination
of the colorization module and the colorization quality es-
timation module can successfully colorize most input pairs
and accurately judge the colorization results into inliers and
outliers.

We also show the distributions of PSNR values of inlier
colorization results over the four datasets in Fig. 14. As
shown, among the inlier results, most images have very high
PSNR values and only very few results’ PSNR values are
less than 40 dB. This figure further reflects that the inlier

colorization results according to our framework always
have very high quality.

Some example of the outlier colorization results are
shown in Fig. 15. The error colors are introduced due to
complicated occlusions. And more examples of the inlier
colorization results are shown in Fig. 16.

6 CONCLUSION AND DISCUSSION

We have presented a novel deep learning based frame-
work for colorization in monochrome-color dual-lens sys-
tem, which consists of the colorization module and the col-
orization quality estimation module. 1) In the colorization
module, we propose the colorization CNN which performs
weighted average of colors of candidate pixels in the refer-
ence image to obtain the colorization result for each pixel
in the input gray image. When learning the weight values,
we perform the attention operation and 3-D regulation. To
correct the results in occlusion regions, we propose the color
correction part. 2) In the colorization quality estimation
module, based on the symmetry property of colorization, we
use the colorization CNN again with horizontal flips for the
inputs and outputs to colorize the gray map of the original
reference color image using the result of the colorization
module as reference. Then, we evaluate the second-time
colorization result with the original reference color image as
ground-truth, and use the evaluated quality to estimate the
colorization quality of the colorization CNN. Experimental
results show that our method achieves superior colorization
qualities than the state-of-the-art colorization methods, and
we can also accurately estimate the colorization quality and
divide the colorization results into inliers and outliers.

The computational complexity of the proposed algo-
rithm is not low enough to be easily employed in the
smart phones for real-time processing. We will study how
to accelerate the algorithm in the future.
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