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Temporal Group Constrained Transformer with
Deformable Landmark Attention for Video

Dimensional Emotion Recognition
Weixin Li, Xiangjing Meng, Linmei Hu, and Xuan Dong

Abstract—Video dimensional emotion recognition aims to map
human affect into the dimensional emotion space based on visual
signals. Recent works notice that it is beneficial to locate key
facial regions related to human emotion perception, as well as
establish long-term temporal dependencies. While preliminary
attempts have been made, there still exists much space for further
improvements. In this paper, to better exploit key facial regions,
we propose the Temporal cue guided Deformable Landmark
Spatial (TDLS) transformer which attends to key facial regions
in a data-dependent manner. We also propose the temporal
cue guided frame representation learning to learn the spatial
representation of each frame by considering features of other
frames together. To better model temporal dependencies, we
propose the Multi-layer Group Constrained Temporal (MGCT)
transformer to summarize features of frames to multi-layer
groups, perform group-to-group communications, and let group-
level features guide the frame-level emotion recognition. We
also introduce cross-clip representation learning to generate
consistent results across different clips and videos. Extensive
experiments are conducted on two benchmark datasets and
superior results are achieved by our method compared to state-
of-the-art approaches.

Index Terms—Dimensional emotion recognition, group con-
strained temporal transformer, deformable landmark attention.

I. INTRODUCTION

IN recent years, the task of emotion recognition has gained
significant attention from both academia and industry for its

wide applications in human-computer interaction [1], health-
care [2], [3], driver fatigue monitoring [4], etc. The dimen-
sional emotion model quantifies human affective behaviors in
a continuous dimensional space, and allows for expressing and
understanding complex emotions [5]–[9]. Given that videos are
easily accessible in general and contain rich emotion-related
cues, we focus on emotion recognition in videos in this paper,
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Fig. 1. Dimensional emotion variance of an example sample from the Recola
dataset [21]. Frames ⑤ and ⑥ have very similar appearances, yet their valence
values differ significantly. The valence value of the occluded frame ② is
challenging to estimate on its own, but can be inferred from other frames ①
and ③ nearby.

and aim at inferring dimensional emotion values, including
valence and arousal, for single frames to describe fine-grained
and variational human affect (as shown in Figure 1).

The keys to solving video dimensional emotion recognition
are spatial affective representation learning for each frame
and inter-frame communication for exploiting their temporal
correlations [10]–[13]. For the former, existing works use
various methods including hand-crafted features [10], [14],
Convolutional Neural Network-based [12], [13], [15]–[17], or
Transformer-based [18], [19] methods to capture emotion re-
lated cues from human faces. For the latter, recent efforts adopt
Recurrent Neural Networks (RNNs) [15], [17] or Temporal
Convolutional Neural Networks (TCNs) [11], [16], [20] to
model frame dependency and achieve promising results.

It is also noticed that certain emotional prior knowledge
is helpful to solve this emotion recognition problem. (1)
Firstly, the perception of human emotions is closely related
to appearances of key face components, e.g. eyes, mouth and
nose, and different face components are complementary to
each other [22]. To exploit this knowledge, recent methods
[16], [19], [22], [23] generate attention maps to focus on
key facial regions and obtain remarkable accuracy. However,
the attention operations of these methods perform grid-based
partition, which is data-agnostic and thus may not be optimal.
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(a) Grid-based attention (b) Deformable landmark attention

Fig. 2. Comparisons of grid-based attention and our deformable landmark
attention.

As shown in Figure 2, only part of the points are concentrated
in the emotion-related facial regions in grid-based attention,
leaving space for further improvement. (2) Secondly, modeling
long-term temporal frame dependency can help refine affective
representations of single frames. Recent works [12], [24]
use Transformer to perform frame-to-frame communications,
achieving promising results. However, as shown in Figure 1,
since some frames may have occlusions, e.g. frame ②, or
appearances with ambiguous emotion states, e.g. frames ⑤
and ⑥, frame-to-frame correlation modeling may be wrong, as
illustrated in Figure 3. In this case, the flickering problem may
appear, i.e. the estimated results of some frames are inaccurate
and shake sharply over their temporally neighboring frames.

In this paper, we provide some novel insights to address
these challenges. (1) For spatial affective representation learn-
ing, we enable candidate points in the attention operation to be
flexibly located on emotion-related positions of eyes, mouth
and nose in a data-dependent manner, as depicted in Figure 2.
(2) For temporal inter-frame correlation modeling, in addition
to frame-level communication, we summarize the information
of neighboring frames to groups, conduct group-to-group
communications, and expand group-level information back to
the frame level. In this way, the wrongly estimated correlation
between individual frames due to occlusions or ambiguous
appearances can be corrected based on the comprehensive
group-level information as illustrated in Figure 3, thus cor-
recting the estimated emotion recognition results of flickering
frames and solving the flickering problem. Integrating these
insights, we propose a fully transformer-based model for video
dimensional emotion recognition. As illustrated in Figure 4, 1)
we propose the Temporal cue guided Deformable Landmark
Spatial (TDLS) transformer to extract affective representation
of each frame. The deformable landmark attention module
is proposed to locate emotion-related key face positions and
establish their connections. We also propose the temporal cue
guided frame representation learning to learn the spatial repre-
sentation of each frame by considering representations of other
frames together. 2) For temporal correlation modeling, we
propose the Multi-layer Group Constrained Temporal (MGCT)
transformer. The multi-layer group constrained transformer
is built, where, besides letting different frames communicate
directly, we extract features of frame groups in a multi-
layer way and perform communications at multiple group-
level layers as well. The group features have summarized
temporal information in a larger field of view, thereby guiding
the frame-level representation learning to avoid the flickering
problem. To train the MGCT transformer, the cross-clip rep-
resentation learning is proposed to generate consistent results
over different clips and videos.
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Fig. 3. In the initial frame-level processing, frame ② gets inaccurate
estimation due to high visual similarity with frame ⑤. By leveraging expanded
group-level information, frame ② can obtain a more accurate estimation in
subsequent frame-level processing.

We demonstrate the effectiveness of the proposed method by
extensive experiments on two widely used benchmark datasets,
namely Recola [21] and SEWA [25]. The proposed method
outperforms state-of-the-art approaches on both datasets.

In summary, the main contributions of this work include:
(1) the TDLS transformer which contains the deformable
landmark attention module to locate key face positions as
the attention points in a data-dependent manner for spatial
affective representation learning, (2) the MGCT transformer
which models long-term temporal affective dependencies using
contextual cues from multi-layer groups, (3) the temporal cue
guided frame representation learning and cross-clip represen-
tation learning for avoiding overfitting problem during the
training of the dimensional emotion regression model, and
(4) a fully transformer-based spatio-temporal model for video
dimensional emotion recognition, which achieves the state-of-
the-art performance on Recola and SEWA datasets.

II. RELATED WORKS

A. Spatial Affective Representation Learning

Traditional spatial affective feature extraction methods are
mostly handcrafted ones including Local Binary Patterns
(LBP) [10], Local Gabor Binary Patterns from Three Orthogo-
nal Planes (LBP-TOP) [14], Nonnegative Matrix Factorization
[14], etc. Recently, deep learning based methods make break-
throughs in improving the performance of emotion recog-
nition. Most of these methods take global facial images as
input [11], [15], [20], neglecting that the perception of human
emotions is also closely related to local key face regions. Some
methods [26], [27] crop key face patches based on landmarks,
and achieve the feature aggregation using learned weights for
multiple local patches. Tellamekala et al. [28] utilize the 3D
face shapes to recognize continuous emotions. However, these
methods rely on the extraction of facial landmarks or 3D face
shapes, which is easily effected by some factors e.g. illumi-
nation variations and occlusions. Xue et al. [22] and Hu et al.
[16] propose to apply the self-attention mechanism to original
feature maps. However, the discriminative regions useful for
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Fig. 4. An overview of our Temporal cue guided Deformable Landmark Spatial (TDLS) transformer and Multi-layer Group Constrained Temporal (MGCT)
transformer. Given a frame sequence {Ii}, facial images are first extracted and aligned, and then fed into TDLS transformer which can attend to emotion-related
areas and generate an affective representation sequence {fi}. MGCT transformer models long-term temporal cues by exploiting group-level representations
and generates refined representation sequence {f∗i } for final prediction.

dimensional emotion recognition can hardly be well located in
this straightforward way. Liu et al. design orientation tokens
to explicitly encode basic orientation regions [29]. Xue et al.
propose two attentive pooling modules to pool noisy features
to avoid the influence of background [30]. To sum up, these
methods explicitly emphasize the necessity of focusing on
local key regions for emotion recognition, but leave much
space for improvement in effective local region localization
and spatial feature extraction.

B. Temporal Affective Dependency Modeling
Recently, RNNs and TCNs have demonstrated their ability

to establish temporal dependencies for video dimensional emo-
tion recognition. Chao et al. [31] utilize the Long Short-Term
Memory (LSTM) network to model temporal correlations.
Sun et al. [32] introduce self-attention in LSTM to improve
its ability to capture long-term dependencies. Bose et al.
[9] propose to predict the time-varying emotion state as a
series of beta distributions based on LSTMs. However, RNNs
generally have the gradient vanishing problem and probably
cannot well capture the long-range semantics. Recent methods
adopt TCNs [11], [16], [33] which expand receptive field of
the convolution by dilated convolution or down-sampling, and
learn affective fluctuation in a coarse-to-fine way. But the
actual receptive field of TCNs is smaller than the theoretical
receptive field [34], leading to their limitations in modeling
long-term temporal dependencies.

Recently, transformers are applied to address various com-
puter vision problems and achieve promising performance,
including image understanding tasks e.g. image classification,
object detection, and instance segmentation [35]–[39], video
understanding tasks e.g. action recognition [40]–[43], etc.
Compared with CNNs, RNNs and TCNs, transformers have
a larger receptive field and are competitive in modeling long-
range dependencies. Thus transformers are suitable to be
employed to establish connections between local face regions,
as well as capture temporal contextual cues from videos with
long spans in our method. Transformers have been adopted
for video understanding [40], video classification [44], the
detection of Mild Cognitive Impairment [45], etc. Recent years
also witness the utilization of large language and multimodal
models for emotion recognition, e.g. Emotion-LLaMA [46],
Video-LLaMA [47], but they are mostly dealing with the
discrete emotion recognition task. One important reason is
the lack of large-scale continuous video emotion recognition
datasets.

Moreover, transformers are not suitable to be directly used
for the video dimensional emotion recognition problem. First,
existing vision transformers mostly adopt a grid-based atten-
tion pattern where potential attended regions are generated
from uniform grids. Yet it is inevitable that emotion-irrelevant
redundant regions exist in the grid-based attention, and some
potential key regions are not fully considered, leading to
unsatisfactory performance. Secondly, performing communi-
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cations directly between frames in the video as is done by
most existing transformers may cause the flickering problem
for video dimensional emotion recognition. Thirdly, when
training on video-based emotion recognition datasets which
usually have small sizes, transformers with a large number of
parameters usually suffer from the problem of overfitting. Our
method fully considers and effectively solves these issues.

III. METHODOLOGY

We propose a fully transformer-based model for video
dimensional emotion recognition. As shown in Figure 4, 1) to
extract emotion-related features fi for each frame Ii, where
i = 1, ..., T is the frame index and T is the number of
frames, we propose the Temporal cue guided Deformable
Landmark Spatial (TDLS) transformer. In TDLS transformer,
the deformable landmark attention module locates emotion-
related key face positions and extracts their features in a
data-dependent manner, as well as establishes connections
between features of these positions in a global scope. This
can help extract features in key areas of the face, comparing
with grid-based attention from popular vision transformers,
e.g. Swin Transformer [48], ViT [36], etc. We also propose
the temporal cue guided frame representation learning to
learn the spatial representation of each frame by considering
features of other frames together. 2) To further make use of
temporal information to boost the recognition accuracy of
each frame, we propose the Multi-layer Group Constrained
Temporal (MGCT) transformer to refine features {fi} to
{f∗i }. In MGCT transformer, we build the multi-layer group
constrained transformer, which extracts features for groups of
frames in a multi-layer way and performs communications
between different groups. The group features have summarized
temporal cues in a larger field of view. They can help correct
the wrongly estimated correlation between individual frames
obtained only using the frame-to-frame communications, thus
alleviating the flicking problem. We also propose the cross-
clip representation learning to generate consistent results over
different clips for training the MGCT transformer.

A. TDLS Transformer

To better learn the spatio representations of each frame, we
design the deformable landmark attention module to focus on
emotion-related key face positions more effectively Specifi-
cally, the Swin Transformer is employed as the backbone of
our TDLS Transformer, which consists of four stages with
a structure of feature pyramid. We replace its shift-window
attention module with the proposed deformable landmark
attention in the third and fourth stages following [49].

We also learn the spatial representation of each frame by
considering other frames in the video, to exploit the temporal
cues in the spatial feature extraction stage. However, due to
memory constraints, we have only a limited number of other
frames available to be used for comparison with the current
frame. To obtain sufficient samples for training, motivated by
Momentum Contrast (MoCo) [50], we generate augmented
data from these frames, and pull frames with similar va-
lence/arousal values closer in a supervised way.

1) Deformable landmark attention: As shown in Figure 4,
a set of reference points are firstly generated, which remain
the same for all the input frames. Specifically, we firstly
average the coordinates of facial landmarks of all images in
the training set, and use the averaged landmark locations as the
face template (with 68 landmarks in total). Secondly, from all
landmarks in the face template, we select 7 representative ones
with relatively scattered positions, which are located at the
center of the two eyebrows, center of the under-eye contour,
tip of the nose and two corners of the mouth, respectively.
Thirdly, we use these 7 points as the mean value to generate
an activation heatmap with the size of HS×WS that obeys the
2D Gaussian distribution, since their nearby areas are treated
as more important than areas far away from them for emotion
recognition [51]. Fourthly, from the heatmap, we sample Nr

position coordinates p, where Nr is the number of embeddings
in the current stage. The sampling principle is that for each
pixel in the heatmap, the probability of selecting its position is
proportional to the pixel value. The sampled points p are used
as the reference points. As Figure 4 shows, for the flattened
input embeddings x ∈ RNr×C of a stage, where C denotes
the embedding dimension, our deformable landmark attention
module uses reference positions p as key positions to extract
rough reshaped embeddings x′, i.e.

x′ = ϕ(x;p), (1)

where ϕ(·) is the bilinear interpolation function.
Since the fixed reference points may not be suitable for the

current input image, we further feed x′ into a sub-network θ,
to learn the offset ∆p of p, i.e.

∆p = θ(x′), (2)

where θ is composed of two CNN layers and each layer
consists of the 3×3 convolution and ReLU. After getting ∆p,
we generate the deformed points p′ by p′ = p+∆p, and the
updated embeddings x′′ of x using the deformed points p′ are
computed by

x′′ = ϕ(x;p′). (3)

Thus the deformed points are obtained in a data-dependent
way, and can be optimized within the TDLS transformer to
improve the emotion recognition performance.

Next, we use x to generate query feature q, and x′′ to
generate key/value features k and v, i.e.

q = xWq,k = x′′Wk,v = x′′Wv, (4)

where Wq,Wk,Wv ∈ RC×C denote the projection matrices.
Multi-Head Self-Attention between q, k and v is further
performed to generate self attended feature z, i.e.

z(m) = σ(q(m)k(m)⊤/
√
d)v(m),m = 1, ...,M, (5)

z = Concat(z(1), ..., z(m))Wo, (6)

where z(m),q(m),k(m),v(m) ∈ RNr×d denote the embedding
output, query, key, value from the m-th attention head respec-
tively. Wo ∈ RC×C denotes the projection matrix. σ(·) is the
softmax function. d = C/M is the dimension of each head
and M denotes the number of attention heads.
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2) Temporal cue guided frame representation learning:
Given a frame, we obtain temporal cue by predicting the
difference between it and other frames in the video to help
learn its spatial feature. And we generate augmented data to
obtain more samples for training.

As shown in Figure 5, for a set of input frames J =
{Ii|i = 1, ..., bs} ∈ Rbs×3×224×224 where bs is the number
of input frames, we feed J into the TDLS Transformer and
an MLP to get the result a ∈ Rbs×D where D is the
dimension of each feature. The augmented frames of J are
fed into the momentum version of the TDLS Transformer,
named Momentum TDLS, as well as an MLP to get the
result b ∈ Rbs×D. The two encoders have the same network
structure. Parameters in the TDLS Transformer are updated by
gradient back propagation, while parameters in Momentum
TDLS are updated in a moving average manner with a
momentum parameter mMT as ξ ← mMT ξ + (1−mMT )ξ

′,
where ξ′ and ξ are parameters in the TDLS Transformer and
Momentum TDLS, respectively.

We maintain a queue containing affective representations
of all images in the training set, which is updated by b. We
perform random sampling in a to get a′ ∈ R1×D, and repeat
a′ to get a′′ ∈ RNk×D. We then sample Nk representations
c ∈ RNk×D near the frame in a′ from the queue. a′′ and c
are concatenated and fed into another MLP for estimating the
absolute difference of the valence or arousal values of a′′ and
c, named D̂s. The loss for training is defined as:

LTG =

Nk∑
i=1

|D̂i
s −Di

s|2, (7)

where Ds is the absolute difference value between ground-
truth labels of a′ and each of the Nk elements in c.

B. MGCT Transformer

As shown in Figure 4, we build the multi-layer group
constrained transformer to exploit temporal information of
{fi} among different frames so as to obtain more accurate
and refined features f∗i for each frame i.

We construct multi-layer groups and perform self atten-
tion in each layer. Groups in different layers have different
temporal resolutions and thus can represent temporal features
from short-term to long-term. By performing group-to-group
communications in different layers, detailed analysis of both
short-term and long-term relationships can be conducted. By
feeding group-level features in different layers back into the
frame-level computation, the estimation of each frame is
guided by the comprehensive multi-layer group information. In
this way, the wrongly estimated frame-to-frame correlation can
be corrected, and the flicking problem can thus be alleviated.

Moreover, we propose the cross-clip representation learning
to let clips with similar affective fluctuations have similar
representations, so as to help generate consistent prediction
results and avoid overfitting in model training of MGCT
transformer.

1) Multi-layer group constrained transformer: We use the
transformer encoder layer [12], which consist of a Multi-Head
Self-Attention layer and a Feed-Forward layer, to let features
of different frames and groups communicate with each other,
i.e. the processing of E in Figure 4, where E is a transformer
encoder layer consisting of a multi-head attention and one add
and normalization operation.

In the frame-level processing (i.e. level 0), the features g(0,0)
i

are fed into the transformer encoder layer to have direct frame-
to-frame communications, where g

(0,0)
i = fi.

In the group-level processing, at any level l (l = 1, 2, ...),
we first summarize features of temporally neighboring frames
at level l − 1, i.e. g(l−1,1) by max-pooling to get the group
feature:

g(l,0) = pooling(g(l−1,1)). (8)

Secondly, g(l,0) are fed into a transformer encoder layer E to
have group-to-group communications and obtain the processed
feature g(l,1), which denotes the features processed by the 1-st
E at level l, i.e. g(l,1) = E(g(l,0)).

The group-level processing is performed iteratively to obtain
multi-layer group features. When expanding the group feature
e.g. g(l,1) at level l to level l − 1, the linear interpolation is
used, i.e.

g(l−1,2′) = Φ(g(l,1)), (9)

where Φ(·) denotes the linear interpolation operation, and we
use the notation 2′ in the right position within the bracket to
denote that the features g(l−1,2′) and g(l−1,2) will be added
before further processing.

During training, in order to achieve joint optimization
for frame-level and different group-level layers, we perform
supervision at all levels. In detail, for the output of the last
transformer encoder layer in different levels, the prediction
is obtained through an inference sub-network, and we down-
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TABLE I
COMPARISON RESULTS OF OUR MODEL IN TERMS OF CCC WITH THE STATE-OF-THE-ART VIDEO-BASE DIMENSIONAL EMOTION RECOGNITION METHODS

ON THE RECOLA DATASET. † INDICATES RE-EXPERIMENT WITH THE SAME EXPERIMENTAL SETUP AS OURS.

Methods Features Models Arousal Valence
Lee et al. [15] Raw Face 3D-CNN + LSTM + STA - 0.546
Wu et al. [20] Raw Face + P&G FER-P&G-Net 0.603 0.686
Du et al. [11] Raw Face SCE + TH-CNN 0.656 0.677

Du et al. † [11] Raw Face SCE + TH-CNN 0.662 0.684
Chen et al. [12] Geometric + LGBP-TOP CNN-TE 0.533 0.664

Chen et al. † [12] Geometric + LGBP-TOP CNN-TE 0.551 0.668
Chen et al. [12] Geometric + LGBP-TOP + Audio CNN-TE 0.838 0.681
Hu et al. [16] Raw Face TS-SATCN 0.659 0.690

Praveen et al. [13] Raw Face I3D 0.582 0.642
Jegorova et al. [52] Raw Face + Audio 3Dconv+ResNet18+GRU 0.675 0.626

Tran et al. [53] Raw Face + Audio AW-HuBERT 0.701 0.653
Bose et al. [9] Raw Face + Audio LSTM+Beta Distribution Modeling 0.639 0.321

baseline Raw Face Swin + TE 0.597 0.674
Ours Raw Face TDLS + MGCT 0.697 0.719

sample the ground-truth labels to the corresponding resolution
for supervision. The loss is thus defined as:

LMGCT =

Nl∑
i=1

T∑
t=1

λi∥ŷi
t − yi

t∥2, (10)

where Nl is the number of levels, ŷi
t is the prediction result

of the i-th level at time step t, and yi
t is the corresponding

ground-truth label. λi is a parameter used to balance the
learning process of different levels.

2) Cross-clip representation learning: The problem of in-
sufficient training samples also exist in the temporal learning
stage. So we propose a regression task to predict distances
between clips for data augmentation.

As Figure 6 shows, we segment each video into Nc clips. A
mini-batch has Nt videos, and thus has Nc×Nt clips in total.
For any pair of clips ci and cj in the mini-batch, we propose to
compute the cross-clip prediction value, i.e. ĈVci,cj = |ŷci−
ŷcj |, and the corresponding ground-truth cross-clip prediction
value, i.e. CVci,cj = |yci − ycj |.

In the training of each epoch, we randomly select one clip
ci in the mini-batch as the main clip, and compute the cross-
clip prediction values between ci and all the other clips cj in
the mini-batch to form the loss, i.e.

LCCL =
∑
cj

|ĈVci,cj −CVci,cj |2. (11)

The insight of LCCL is to encourage the estimated values of
different clips to be consistent in the affective fluctuation.

Above all, the total loss of our method is:

L = αLMGCT + βLTG + γLCCL, (12)

where α, β, γ are parameters for balancing different terms.

IV. EXPERIMENTS

A. Datasets

To demonstrate the effectiveness of our method, we conduct
extensive experiments on two widely used benchmark datasets,
i.e. Recola [21] and SEWA [25].

Recola is one multimodal corpus recording behaviors of
subjects as they work in pairs remotely. It contains 27 record-
ing sessions annotated with Arousal and Valence, equally split
for training, validation, and testing. The duration of each
recording is 5 minutes with 7,501 frames.

SEWA collects multimodal spontaneous and naturalistic
human interactions. It contains 64 recording sessions annotated
with Arousal, Valence, and Liking, with 34, 14 and 16 sessions
for training, validation and testing respectively. The recording
duration ranges from 40 seconds to 3 minutes.

Both datasets have been adopted for the Audio-Visual
Emotion recognition Challenges (AVEC) [56]–[58]. For both
datasets, we only use visual signals, and adopt their standard
data splits.

B. Metrics

We follow the protocol in [56], [57], and evaluate the per-
formance of different video dimensional emotion recognition
methods using Concordance Correlation Coefficient (CCC)
[59] in the Arousal and Valence dimensions. Since sample
labels in the test set are not available in Recola and SEWA
datasets, we train the methods on the training set, and report
experimental results on the validation set.

C. Implementation Details

Network parameters. In our TDLS transformer, for the
backbone Swin Transformer [48], the activated outputs from
its penultimate linear layer are used as spatial features which
have a dimension of 128. The size of input images is 224×224.
OpenFace [60] is used for face detection, alignment and
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TABLE II
COMPARISON RESULTS OF OUR MODEL IN TERMS OF CCC WITH STATE-OF-THE-ART METHODS ON THE SEWA DATASET. † INDICATES RE-EXPERIMENT

WITH THE SAME EXPERIMENTAL SETUP AS OURS. ALL THESE METHODS USE THE RAW FACES AS INPUT.

Methods Features Models Arousal Valence
Lee et al. [15] Raw Face 3D-CNN + LSTM + STA - 0.612

Huang et al. [17] Raw Face 3D-CNN + ConvLSTM 0.583 0.654
Du et al. [11] Raw Face SCE + TH-CNN 0.715 0.713

Du et al. † [11] Raw Face SCE + TH-CNN 0.719 0.720
Sanchez et al. [54] Raw Face AP 0.662 0.672
Toisoul et al. [23] Raw Face FAN + Attention 0.610 0.650

Tellamekala et al. [55] Raw Face HG-FAN + APs 0.650 0.710
Tellamekala et al. [28] Raw Face EmoFAN + GRU 0.568 0.715

Jegorova et al. [52] Raw Face + Audio 3Dconv + ResNet18 + GRU 0.713 0.771
baseline Raw Face Swin + TE 0.663 0.704

Ours Raw Face TDLS + MGCT 0.737 0.740

TABLE III
COMPARISON RESULTS OF OUR MODEL IN TERMS OF CCC WITH VIDEO

TRANSFORMERS ON RECOLA DATASET. † INDICATES THAT THE MODEL IS
NOT PRE-TRAINED ON AFFECTNET DATASET AND HAS THE SAME

EXPERIMENTAL SETTINGS AS VIDEO TRANSFORMERS.

Methods Models Arousal Valence
Param
(×106)

Bertasius et al. [40] Timesformer 0.539 0.612 121.4
Arnab et al. [44] ViViT 0.550 0.634 115.1

Ours† TDLS + MGCT 0.594 0.663 60.7
Ours TDLS + MGCT 0.697 0.719 60.7

TABLE IV
EXPLORATION OF ATTENTION PATTERNS IN TERMS OF CCC ON RECOLA

DATASET.

Models Arousal Valence
Swin 0.374 0.563

FL-Swin 0.376 0.560
RP-Swin 0.377 0.565

TDLS 0.381 0.567

TABLE V
EXPLORATION OF ATTENTION PATTERNS IN TERMS OF CCC ON

AFFECTNET DATASET.

Models Arousal Valence
Swin 0.531 0.586

RP-Swin 0.534 0.588
TDLS 0.535 0.594

landmark detection for the training set. The size of the 2D
Gaussian heatmap is 28×28. We sample 196 and 49 points for
the third and fourth stages of Swin Transformer respectively.
In the temporal cue guided frame representation learning,
the momentum parameter mMT is set to 0.999, and the
number for sampling, i.e. Nk, is set to 768. For the MGCT
transformer, we have one frame level and two multi-layer

TABLE VI
EXPLORATION OF TEMPORAL-CUE GUIDANCE IN TERMS OF CCC ON

RECOLA DATASET.

Models Arousal Valence
Swin w/o temporal-cue guidance 0.374 0.563
Swin w/ temporal-cue guidance 0.409 0.576

TDLS w/o temporal-cue guidance 0.381 0.567
TDLS w/ temporal-cue guidance 0.417 0.578

TABLE VII
EXPLORATION OF MOMENTUM UPDATE STRATEGY IN TERMS OF CCC ON

RECOLA DATASET.

Models Arousal Valence
Momentum 0.417 0.578

Non-momentum 0.402 0.573

group levels, whose output channels are 128, 256, and 512
respectively. The number of clips from one input is set to
3 in cross-clip representation learning. Taking the dataset
size, video length/frequency, and computation efficiency into
consideration, we use 768 and 400 time steps on Recola and
SEWA datasets respectively.

Network training. We train our TDLS and MGCT trans-
formers separately. During training, the mini-batch size is set
to 256 for the TDLS transformer. The TDLS transformer
is first pretrained on ImageNet-1K [61] and then fine-tuned
on AffectNet dataset [62] with a learning rate of 1e−5. The
obtained model is then fine-tuned on Recola or SEWA dataset
with a learning rate of 1e−6. We perform zoom with a factor
from 1.1 to 1.5, horizontal flip and color perturbation for
data augmentation in temporal cue guided frame representation
learning at the training phase. For the MGCT transformer, the
mini-batch is set to 64, and the learning rate is 1e−4. The
parameter λi is set to 1.2, 0.9 or 0.6 in Eq. 10 for outputs with
different scales. Parameters α, β and γ in Eq. 12 are set to 1,
0.1 and 0.1 respectively. We adopt Adam [63] for optimization.
Our training is conducted on three Nvidia GeForce RTX 3090
cards.
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D. Comparison with the State-of-the-Art Methods

We compare the proposed model with several state-of-the-
art video dimensional emotion recognition methods on Recola
dataset in Table I and on SEWA dataset in Table II. In
terms of spatial affective representation learning, Chen et al.
[12] use the handcrafted LGBP-TOP feature, while the other
comparison methods [9], [11], [13], [15]–[17], [23], [28],
[52], [55] extract features based on CNNs. Tran et al. [53]
learn the audio and visual representations using Transformers.
Du et al. [11] pretrain their Spatial Convolutional Encoder
(SCE) on the FERplus [64] dataset in advance, Praveen et
al. [13] pretrain their I3D model on the Kinetics-400 dataset
[65], Jegorova et al. [52] pretrain their model using the Lip
Reading Sentences 3 dataset (LRS3) [66], Tellamekala et al.
[55] use the VGG-Face database [67] for model pre-training,
while the other works do not mention pre-training in their
papers. In terms of temporal modeling, CNN-TE [12] use
transformer encoder (TE) while earlier methods [11], [15]–
[17], [52] are based on RNNs or TCNs. CNN-TE [12] only
selects 8 of the 9 videos in the original training set as its
training set. Affective Process (AP) [54], [55] models the
affective fluctuation as a stochastic process. To make fair
comparisons, we re-experiment the open-source state-of-the-
art methods with the same experimental setups as ours. We
pre-train the SCE and TH-CNN in [11] on ImageNet-1K and
AffectNet datasets and then fine-tune on the target dataset.
We retrain CNN-TE [12] on all the 9 videos of training set of
Recola. To demonstrate the effectiveness of our method more
intuitively, we design a fully transformer-based baseline model
in which the spatial encoder is a Swin Transformer and the
temporal encoder is a 4-layer transformer-encoder.

As we can see from the results reported on Recola dataset in
Table I, our method achieves the best performance for Arousal
and Valence respectively when using only visual signals. Using
both visual and audio signals, the CCC score of CNN-TE [12]
for Arousal reaches the highest value 0.838, since Arousal
can be reflected more from the audio signals. But even with
audio signals, its performance for Valence is still inferior to
our method, and it achieves relatively poor performance when
only using visual signals.

We can draw similar conclusions from the results on SEWA
dataset in Table II. Our method achieves the state-of-the-art
results on SEWA dataset with improvements for both Arousal
and Valence using only visual signals. Using both visual and
audio signals, the CCC score of the method by Jegorova et al.
[52] for Valence is better than our method, while their method
also pretrains on LRS3 dataset. We attribute our improved
performance to transformer’s powerful long-range modeling
capabilities, which can be seen from results of the baseline
model. In addition, the proposed deformable landmark atten-
tion and multi-layer group level guidance enable our model to
significantly outperform the baseline model.

E. Comparison with Video Transformers

We propose a fully transformer-based model for video
dimensional emotion recognition. Recently, some fully

(a) Base (b) Summarize twice (c) No guidance

Fig. 7. Illustration of three different forms of MGCT transformer.

TABLE VIII
VALIDATION OF DIFFERENT FORMS OF MGCT TRANSFORMER ON

RECOLA DATASET IN TERMS OF CCC.

Pattern Arousal Valence
Base 0.697 0.719

Summarize twice 0.681 0.711
No guidance 0.679 0.707

TABLE IX
EXPLORATION OF SUMMARIZATION PATTERN IN MGCT TRANSFORMER

IN TERMS OF CCC ON RECOLA DATASET.

Pattern Arousal Valence
Max-pooling 0.697 0.719

Average-pooling 0.680 0.714
Concatenate 0.657 0.706

transformer-based methods are proposed for video classifi-
cation tasks, e.g. TimeSformer [40] and ViViT [44]. We
also compare with them to show the effectiveness of our
method. ViViT extracts spatio-temporal tokens from input
video, and encodes them by a series of transformer layers.
To handle long token sequences, several efficient variants of
ViViT are proposed, and we adopt the Factorised encoder
model considering both the accuracy and computational costs.
TimeSformer learns spatio-temporal video features from a
sequence of frame-level patches based on self-attentions. Here
we adopt the divided attention with the best performance in
TimeSformer. We initialize ViViT and TimeSformer using
a ViT image model [36] trained on ImageNet-1K. Due to
memory constraints, we reduce the length of a single sample
for video transformers to 80, and re-experiment our method
under the same setting.

The comparison results on Recola dataset are shown in
Table III. Our method reduces the parameters by about half
compared with video transformers, but the performance im-
proves by 8.0% and 4.6% in terms of CCC for Arousal and
Valence respectively under the same setting. We argue that
the reason for the poor performance of video transformers is
that large-scale models commonly have overfitting problems
on small datasets, which can seriously damages their per-
formance. Our method locates key positions and establishes
connections between them, and models long-term temporal
dependencies with multi-layer groups, thus effectively solving
the video dimensional emotion recognition problem.
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TABLE X
EXPLORATION OF GROUP SIZE IN TERMS OF CCC ON RECOLA DATASET.

Group Size Arousal Valence
3 0.662 0.702
4 0.697 0.719
5 0.691 0.705
6 0.672 0.698

TABLE XI
VALIDATION OF THE MGCT TRANSFORMER WITH DIFFERENT GROUP

LEVELS IN TERMS OF CCC ON RECOLA DATASET.

Level Arousal Valence
Frame 1st-layer Group 2nd-layer Group

✓ 0.611 0.681
✓ ✓ 0.617 0.710
✓ ✓ 0.684 0.689
✓ ✓ ✓ 0.697 0.719

F. Ablation Study

We also conduct ablation studies for our method to analyze
the effectiveness of each component.

1) Ablation study for TDLS transformer: For the proposed
TDLS transformer, we conduct experiments to evaluate contri-
butions of the deformable landmark attention module, as well
as the temporal cue guidance and momentum update strategies.

Effectiveness of deformable landmark attention. Table IV
shows the results of Swin Transformer with different attention
patterns on the Recola dataset, where the listed models in
the first column are used as the spatial encoder. To avoid
the influence of subsequent temporal modeling stage, features
extracted by the spatial encoder are directly passed through
an inference sub-network to obtain the final prediction results.
RP-Swin is obtained by replacing points on the grids in
Swin with the reference points obtained by our sampling
strategy. RP-Swin improves by 0.8% for Arousal and 0.4%
for Valence, which shows the rationality of our generated
reference points. We argue that the improvement of RP-Swin
compared with Swin comes from the avoidance of interference
by irrelevant areas as well as the finer embeddings obtained
through bilinear interpolation. With TDLS, the performance is
improved by 1.9% for Arousal and 0.7% for Valence compared
with Swin, which is attributed to the deformable landmark
attention that intensively focuses on emotion-related regions
in a data-dependent way. Adjusting the points based on the
input facial image can contribute to more accurate attention
results. We also compare with FL-Swin, which uses landmarks
of test images obtained by external detectors as p′. Its CCC
scores are worse compared to TDLS, showing the effectiveness
and necessity of our deformable landmark attention module
integrated in the end-to-end Swin Transformer.

We also evaluate the deformable landmark attention module
on AffectNet dataset. Table V shows the comparison results
of transformers with different attention patterns on AffectNet
dataset. The models are set in the same way as is done for
Recola dataset. As shown in Table V, RP-Swin improves

TABLE XII
VALIDATION OF MULTI-LEVEL OUTPUTS IN OUR MGCT TRANSFORMER IN

TERMS OF CCC ON RECOLA DATASET.

Level Arousal Valence
Frame 0.697 0.719

1st-layer Group 0.615 0.676
2nd-layer Group 0.576 0.645

TABLE XIII
EXPLORATION OF CROSS-CLIP REPRESENTATION LEARNING (CCL) IN

TERMS OF CCC ON RECOLA DATASET.

Models Arousal Valence
TE w/o CCL 0.597 0.674
TE w/ CCL 0.611 0.681

MGCT w/o CCL 0.685 0.715
MGCT w/ CCL 0.697 0.719

by 0.6% for Arousal and 0.3% for Valence on AffectNet
dataset compared with Swin transformer. We argue that the
improvement comes from the avoidance of the interference of
irrelevant areas in RP-Swin. With our TDLS, the performance
is improved by 0.8% for Arousal and 1.4% for Valence, which
is attributed to the proposed deformable landmark attention.

Effectiveness of temporal cue guidance. The evaluation
results of the temporal cue guidance strategy on Recola dataset
are reported in Table VI. Here we still discard the temporal
modeling stage. With temporal cue guidance, Swin transformer
has an improvement of 9.4% for Arousal and 2.3% for Va-
lence. The performance of TDLS with temporal cue guidance
is improved by 9.4% for Arousal and 1.9% for Valence. From
these results, it can be demonstrated that temporal cue can
guide the model to learn affective fluctuation information
so that more discriminative affective representations can be
extracted. This can be proved from the experimental results
that the improvement brought by temporal cue guidance for
Arousal is much greater than that of Valence, since the
recognition of Arousal requires more temporal information
than Valence.

Effectiveness of momentum update. In TDLS transformer,
we use the momentum update strategy to obtain more sam-
ples for comparison with the current frame under limited
computing resources. To justify our choice, we also add
the experiment with the non-momentum update strategy. The
experimental results on the validation set of Recola dataset
[21] are shown in Table VII. The CCC scores with non-
momentum update strategy are lower than the scores achieved
with momentum update strategy, showing its effectiveness.

2) Ablation study for MGCT transformer: For the pro-
posed TDLS transformer, we conduct experiments to explore
different forms of MGCT transformer, group-level feature
fusion methods, group size and the number of levels in
MGCT respectively. We also validate the multi-level outputs in
MGCT and evaluate contributions of cross-clip representation
learning.

Different forms of MGCT. We design three different forms
of MGCT transformer as shown in Figure 7. In the first one as
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Fig. 8. Visualization results on AffectNet dataset [62] of sampling locations
from different attention patterns in the spatial encoder at Stage 4. The points
showed in the first two rows are generated from uniform grids and our
sampling strategy respectively. The third row shows the learned sampling
locations based on our deformable landmark attention.

Fig. 9. Heatmap visualization of the TDLS transformer on AffectNet dataset.

shown in Figure 7(a), only when a new group level of feature
sequence is generated for the first time, we summarize the
feature sequence of its previous level, which is our default
setting. In the second one as shown in Figure 7(b), at each
layer of the group levels, feature sequences of all previous
levels will be summarized. In the last one as shown in Figure
7 (c), we do not use any guidance from the multi-layer group
layer.

The evaluation results of different forms of MGCT trans-
former on Recola dataset are reported in Table VIII. It can be
seen that the best performance is achieved when the default
setting is applied. More complex interactive mode does not
necessarily lead to better performance, but may incur more
parameters that are more difficult to optimize. The worst
performance is achieved by the model without any guidance
from the multi-layer group level, which demonstrates the
necessity of group-level processing that summarizes effective
group-level cues for alleviating the flickering problem.

Group-level feature fusion. In MGCT transformer, we use
max-pooling for Summarize. We also conduct experiments
with two other methods, i.e. average-pooling and concatenat-
ing for Summarize. The evaluation results on Recola dataset
are reported in Table IX. It can be demonstrated that sum-
marizing one group by max-pooling can help obtain better
affective representation of the group.

MGCT w/o group level
MGCT w/ group level
Ground truth

0.164
0.145
0.154

0.261
0.129
0.159

0.180
0.122
0.139

Arousal
①

②

③

frame

1
1
1

2

2
2

3

3
3

1

1

1

2

2

2

3

3

3

Fig. 10. Prediction curves of a test sample from the Recola dataset. Estimation
of frame ② is inaccurate with only frame-level processing, but can be corrected
when guided by group-level cues.

Group size. For the multi-layer group in MGCT trans-
former, in order to balance the accuracy it improves and the
error it incurs, we perform ablation experiments on the number
of representations used in each group. The evaluation results
on Recola dataset are reported in Table X, which show that 4
is the most suitable size for one group.

Level number. To explore the impact of different level
numbers in our MGCT transformer, we design four MGCTs
respectively with different levels. When there is only the frame
level, MGCT degenerates to the baseline temporal encoder.
The validation results of different MGCTs on Recola dataset
are shown in Table XI. We can find that when there is only the
frame level, the performance is the worst. The performance of
the model with the 2nd-layer group level is better than that
with the 1st-layer group level in terms of CCC for Arousal.
The corresponding results in terms of CCC for Valence are the
opposite. We argue that the representations for Arousal have
more noises than those for Valence, and the 2nd-layer group
level filters out more noises, resulting in better performance
than the 1st-layer group level. For Valence, the less affective
detail loss is more important, so the performance of the 1st-
layer group level is better than that of the 2nd-layer group
level. The best performance is achieved when the model has
all the levels, which demonstrates that features from three
different levels are complementary to each other. We only test
the performance of the proposed method for two levels due to
computational constraints, since adding one level will increase
the total computation costs, especially at higher levels.

Validation of multi-level outputs. Our MGCT transformer
generates affective feature sequences in three different levels,
i.e. the frame-level, the 1st-layer group level, and the 2nd-
layer group level, which can be referred to as {f∗i } ∈ RT×D,
{g(1,2)} ∈ R(T/4)×D, and {g(2,1)} ∈ R(T/16)×(2×D) respec-
tively, where T denotes the length of input image sequence
and D denotes the feature dimension. All of them are fed
into an inference sub-network respectively to generate the
prediction results for arousal and valence, i.e. {ŷ1

t } ∈ RT×2,
{ŷ2

t } ∈ R(T/4)×2, and {ŷ3
t } ∈ R(T/16)×2. Since the lengths

of outputs in different levels are different, we down-sample
the original ground-truth labels to the corresponding temporal
resolution as the ground truth. We calculate the CCC scores
for outputs from different levels of our MGCT transformer
respectively on the validation set of Recola dataset as shown
in Table XII. We can find that CCC becomes higher from the
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Fig. 11. The prediction curves of valence and arousal of our method on Recola dataset. (a) illustrates the comparison between the predictions from different
levels of our MGCT transformer and the ground truth in terms of Valence on the video dev 9.mp4. (b) illustrates the comparison between the predictions
from different levels of our MGCT transformer and the ground truth in terms of Arousal on the video dev 7.mp4.

2nd-layer group level to the frame level. At the 1st-layer group
level, the CCC score is comparable to the score of the final
output, while CCC keeps increasing in the frame-level since
more fine-grained emotion details are learned by aggregating
the summarized group-level information.

Effectiveness of cross-clip representation learning. The
results on Recola dataset reported in Table XIII demonstrate
the effectiveness of our cross-clip representation learning
strategy. We train different temporal transformers with features
extracted from TDLS with temporal cue guidance. With our
strategy, the performance of MGCT is improved by 1.8% for
Arousal and 0.6% for Valence.

G. Visualization results

Deformable landmark attention module. To verify the
effectiveness of our deformable landmark attention module,
we visualize different sampling points on the original input
image. We randomly choose four images from the AffectNet
dataset [62], and show points generated from uniform grids,
our proposed sampling strategy and our deformable landmark
attention module in Figure 8. We can find that the grid-
based attention pattern adopted in Swin Transformer attends
varieties of regions that are useless for emotion recognition
such as background and hair. Whereas our sampling strategy
drastically reduces the number of points falling in the irrel-
evant areas. Moreover, in the images shown in the second
and fourth columns, the subjects’ hairs occlude parts of their
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faces, but the hand-designed attention pattern still attends
to these occluded areas. On the contrary, our deformable
landmark attention makes parts of the reference points that
originally fall in the hair, background and other irrelevant
regions shift to the key areas of the face, which demonstrates
that the proposed deformable landmark attention can localize
key facial regions related to emotion recognition adaptively
in a data-dependent manner. We also visualize the outputs
from the TDLS transformer to highlight the key facial regions
that it focuses on in Figure 9, which shows that our method
can attend on key regions that are closely related to human
emotions.

Prediction curves. To visually compare the predictions
generated by our method with the ground truth, we visualize
the curves of predictions from different levels of our MGCT
transformer and ground truth curves of random samples on
Recola dataset [21] as shown in Figure 11. Figure 11 (a) shows
a relatively simple scene, where the emotions are relatively
stable for most of the time, and there are only a few sudden
changes. Figure 11 (b) shows a scene with many emotional
changes, which has higher requirements on the performance of
the prediction model. We can find that our prediction curves
fit the ground truth well, which shows the effectiveness of
our method. From multi-layer group levels to frame level, the
prediction results are improved, which is consistent with the
results in Table XII.

Effectiveness of solving the flickering problem. To verify
the effectiveness of our MGCT in relieving the flickering
problem, we visualize the prediction curves of a test sample
in Figure 10. Flickering problem exists in baseline Trans-
former with only frame-level communications. In MGCT, we
summarize representations of frames into representations of
multi-level groups. Refined group representations by group-
level communication further guide learning of frame-level rep-
resentations through expanding, helping correct the inaccurate
frame correlations estimated in frame-to-frame communication
and thus alleviating the flickering problem.

V. DISCUSSION

We propose the Temporal cue guided Deformable Landmark
Spatial (TDLS) transformer and the Multi-layer Group Con-
strained Temporal (MGCT) transformer to better exploit and
model the spatio and temporal cues for dimensional emotion
recognition. We use multi-layer frame groups to model long-
term temporal affective dependencies. One deficiency of our
model lies in the increase of model complexity as the number
of layers increases. More layers have the potential to model
contextual cues more effectively, so one future work is to
design more computational efficient module for temporal cue
learning. Another future work is to utilize data from more
modalities besides the visual one, i.e. designing multimodal
feature extraction and fusion modules for video dimensional
emotion recognition. Moreover, foundation models can be
exploited for this task.

VI. CONCLUSION

In this paper, we propose a temporal group constrained
transformer with deformable landmark attention for video

dimensional emotion recognition. We propose the TDLS
transformer with deformable landmark attention which can
flexibly attend to emotion-related positions when learning
spatial representation. The MGCT transformer is proposed
to further refine the extracted features by modeling temporal
dependencies using group-level cues. In addition, the tempo-
ral cue guided frame representation learning and cross-clip
representation learning are introduced for model training. The
effectiveness of our approach is demonstrated by state-of-the-
art results reported on two benchmark datasets.
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