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Abstract Scalable video quality enhancement refers to the

process of enhancing low quality frames using high quality

ones in scalable video bitstreams with time-varying qualities.

A key problem in the enhancement is how to search for cor-

respondence between high quality and low quality frames.

Previous algorithms usually use block-based motion estima-

tion to search for correspondences. Such an approach can

hardly estimate scale and rotation transforms and always in-

troduces outliers to the motion estimation results. In this pa-

per, we propose a pixel-based outlier-free motion estimation

algorithm to solve this problem. In our algorithm, the mo-

tion vector for each pixel is calculated with respect to esti-

mate translation, scale, and rotation transforms. The motion

relationships between neighboring pixels are considered via

the Markov random field model to improve the motion esti-

mation accuracy. Outliers are detected and avoided by tak-

ing both blocking effects and matching percentage in scale-

invariant feature transform field into consideration. Exper-

iments are conducted in two scenarios that exhibit spatial

scalability and quality scalability, respectively. Experimen-

tal results demonstrate that, in comparison with previous al-

gorithms, the proposed algorithm achieves better correspon-

dence and avoids the simultaneous introduction of outliers,

especially for videos with scale and rotation transforms.

Keywords motion estimation, scalable video coding, video

super resolution.
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1 Introduction

With the increasing use of MPEG dynamic adaptive stream-

ing (DASH) [1] and scalable video coding (SVC) standards

[2], streaming servers on the sender side often adjust the

video rate to prevent the playback on the receiver side from

stalling. As a result, on the receiver side, video bitstream

quality varies with time. This kind of video is called scalable

video, where some pre-buffered frames are of high quality

while other frames are of low quality, in which the fine details

of the enhancement layers are missing due to lower resolution

or quality. Scalable video quality enhancement refers to the

process of enhancing low quality (LQ) frames using the cor-

responding details of the high quality (HQ) frames, thus im-

proving the quality of the live streamed or pre-encoded video

bitstreams with time-varying quality.

The key problems in scalable video quality enhancement

are to search for the correspondence between HQ and LQ

frames and select the high frequency (HF) components of

HQ frame to recover those of LQ frame. It remains a diffi-

cult problem for the following reasons: 1) motions between

HQ and LQ frames are often complicated in practical videos,

including translation, scale, and rotation. 2) In textureless re-

gions, the intensity based metric of motion estimation (ME) is

useless. 3) Many occlusions exist when the intervals between

HQ and LQ frames are large. 4) Lighting conditions and com-

pression ratios may have large variation between frames due

to a change of scene lighting or camera parameters, change

of resolution, or quantization parameter (QP) values, etc. The

goal of an ME algorithm for scalable video quality enhance-
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ment is to exploit the correspondence between HQ and LQ

frames as much as possible while avoiding introducing out-

liers to the motion estimation results. In this paper, outliers

are points where the wrong correspondence is calculated by

the ME algorithm.

Previous algorithms often utilize block-based motion es-

timation (BBME) with a sum of absolute differences (SAD)

strategy to search for correspondence. For example, in [3],

the motion-compensated super resolution (MSR) method uti-

lizes hierarchical ME and bi-directional ME with overlapped

block motion compensation (OBMC). In the learning stage,

the learn-based super resolution (LSR) method trains blocks

using K-means clustering to obtain K clusters of blocks. In

the inference stage, for each block, the method performs a full

search of the K clusters to get the best match. In [4], variable-

block-size ME with OBMC are utilized. In [5], block-based

Scale-Invariant Feature Transform (SIFT) feature [6] match-

ing is utilized, followed by warping each block. However,

BBME is not good at estimating complicated motions be-

cause the pixels within each block may have different mo-

tions and the best-match block may have different scale or

rotation. BBME also does not perform robustly in textureless

regions because it does not consider the spatial relationships

of pixels. The SAD metric is affected by changes in light-

ing or compression ratio and is not sensitive enough to out-

liers because many outliers have similar information in low

frequency (LF) components but different information in HF

components, as introduced in [7]. As a result, the available

areas in a HQ frame that can help enhance an LQ frame are

not fully exploited and the BBME results have many outliers,

leading to introducing artifacts into the enhanced video.

In order to exploit more available areas in HQ frames when

there exist scale and rotation transforms, and textureless re-

gions while at the same time avoid introducing outliers when

lighting conditions and compression ratio change, we present

a pixel-based outlier-free motion estimation algorithm. First,

our pixel-based model is able to describe complicated mo-

tions including scale and rotation transforms because it gen-

erates a motion vector for each pixel instead of a block of

pixels. Second, our model considers the motion relationship

between neighboring pixels so that information from highly

textured regions can be propagated into textureless regions,

and some incorrect pixel correspondence can be repaired us-

ing neighbor pixels results. Third, based on the observation

that outliers are always distinguishably different from cor-

rect pixels in HF components, our outlier detection model

uses blocking effects and the matching percentage in the SIFT

field, for the reason that these two factors are sensitive to dif-

ferences in HF components while insensitive to differences in

LF components, such as change of lighting conditions. Thus

the outlier detection model is not only sensitive to outliers but

also robust to change of lighting and compression ratio.

We conduct experiments on two scenarios: spatial scalabil-

ity and quality scalability. In the first scenario, the LQ frames

have lower resolution than the HQ frames. The problem in

this scenario is the same as that in video super resolution dis-

cussed in [3–5, 8–10]. In the second scenario, the LQ frames

have higher QP values than the HQ frames. The problem in

this scenario can be regarded as a cross segment enhance-

ment problem as discussed in [11, 12]. The general diagram

for enhancing a spatial scalability sequence is shown in Fig.

1, and a general diagram for enhancing a quality scalability

sequence is shown in Fig. 2. The difference between the two

is that the received LQ frames need to be upsampled at first

in the spatial scenario. Then, in both scenarios, we search

for correspondence and HQ frames are warped according to

ME results, outliers are detected and HF components of LQ

frames are repaired.

Fig. 1 General diagram of decoded video quality enhancement for spatial scalability sequence



Xuan DONG et al. A pixel-based outlier-free motion estimation algorithm for scalable video quality enhancement 3

Fig. 2 General diagram of decoded video quality enhancement for spatial scalability sequence

Our experimental results demonstrate that, in comparison

with previous algorithms, our algorithm can search for corre-

spondence in many more areas and avoid introducing outliers

at the same time, especially for videos with scale and rotation

transforms.

Section 2 introduces related work, and Section 3 formu-

lates the problem of pixel-based outlier-free motion estima-

tion. Section 4 introduces the proposed algorithm. Experi-

mental results are demonstrated and discussed in Section 5.

Finally, conclusions are presented in Section 6.

2 Related work

In this section, we review related example-based image super

resolution and video super resolution algorithms.

Image super resolution refers to the process in which a

higher-resolution enhanced image is synthesized from one

or more low-resolution images. Example-based image super

resolution is a learning-based approach. In the learning stage,

the algorithm learns the scene details that correspond to dif-

ferent image regions observed in the input. In the inference

stage, those learned relationships are utilized to predict miss-

ing details in the target high-resolution image. The algorithm

in [7] considers both intensity similarity and spatial smooth-

ness of patches, and models the problem as a Markov net-

work. The work in [13] extends the Markov network to han-

dle the estimation of point spread function (PSF) parameters.

The methods in [14] consider the symmetry of a cropped hu-

man face in the Markov network. The algorithm [15] utilizes

vector quantization to organize example patches. We refer the

reader to a more detailed taxonomy of example-based image

super resolution algorithms in [16].

Video super resolution is more related to this paper’s topic.

Different from example-based image super resolution, in the

problem of video super resolution, because some frames are

of higher quality due to SVC, the algorithms learn from the

HQ frames of the sequence to enhance the LQ frames. Re-

lated work can be found in [3–5, 8–10]. In [3], motion-

compensated super resolution (MSR) and learn-based super

resolution (LSR) are proposed.MSR utilizes hierarchical mo-

tion estimation (ME) and bi-directional ME with overlapped

block motion compensation (OBMC) to search for correla-

tion and replaces the whole block with the best matching

block of the HQ frame. LSR builds an on-the-fly training

dictionary using K-means clustering in the learning stage. In

the inference stage, for each block, the algorithm performs a

full search of the K clusters of blocks to find the best match.

Then, a least mean squares filter is utilized to enhance details.

In [4, 5], the authors extend their work in [8–10]. The al-

gorithm in [4] utilizes variable-block-size motion estimation

and OBMC in low-pass filtered blocks to discover K similar

blocks, and replace the HF components of the block using

the average of the HF components of the K blocks in the HQ

frames. The work in [5] considers the projective transform

of scenes. It utilizes block constrained SIFT feature match-

ing for each block, warps each block respectively, and selects

the best matching block with minimum SAD in the gradient

field.

The absence of an efficient stochastic computing method,

especially a method that can search for correspondence ac-

curately and avoid introducing outliers, makes scalable video

quality enhancement less attractive. In this paper, we propose

a pixel-based outlier-free motion estimation algorithm so as

to achieve better enhancement results.

3 Problem formulation of pixel-based outlier-
free motion estimation

In this section, we formulate the problem of pixel-based

outlier-free motion estimation for scalable video quality en-



4 Front. Comput. Sci.

hancement. This can help us understand the fundamental

problems that we are facing, how to describe them mathemat-

ically, and expose the key factors to solve these challenges.

3.1 Pixel-based motion estimation

In this subsection we formulate the problem of pixel-based

motion estimation between a LQ frame and a HQ frame. The

goal is to solve three problems: complicated transforms, tex-

tureless regions, and noise.

In videos, because multiple objects move in different direc-

tions with different speeds, and the camera itself also moving,

motion transforms can be very complicated. Depending on

the motion types, the transform can be classified into three

levels: euclidean translation, affine transform, and projective

transform. Since motion in practical videos always belongs

to projective transform, a robust algorithm should be able to

find correspondence where scene motions belong to a projec-

tive transform that includes scale and rotation transforms. In

addition, an intensity-based metric like SAD is useless in tex-

tureless regions. Thus, information from highly textured re-

gions needs to be propagated into textureless regions so as to

find the correct correspondence in textureless regions. Noise

always exist in HQ and LQ frames because of unavoidable

light variations, compression ratio variations, image blurring,

and so forth. So the algorithm should also be robust and in-

sensitive to noise.

Unlike traditional BBME, the proposed ME estimates mo-

tion vectors for each pixel and considers the motion relation-

ship between neighboring pixels. This is a Bayesian problem

and it can be modeled as a conditional probability

P(u|L,H;Ω), (1)

where u is the estimated motion vector for each pixel, L is the

LQ frame, H is the HQ frame, andΩ is the model parameters.

According to Bayesian rule, we have

P(u|L,H;Ω) ∝ P(u|ΩS )P(L,H|u;ΩD). (2)

The model parameterΩS describes a spatial term: how the

motion vector is expected to vary across the picture, i.e. the

relationship between neighboring pixel motion vectors. The

model parameter ΩD describes a data term: how the pixel of

an LQ frame is different from the pixel of an HQ frame with

motion vector u. And the best estimation can be obtained by

maximizing the a posteriori probability (MAP), i.e.,

argmax
u∈S

P(u|ΩS )P(L,H|u;ΩD), (3)

where S is the set of all the possible ME values. Then the

problem of searching for correspondence can be transferred

to computing the MAP of Bayesian Labeling.

The advantage of pixel-based motion estimation is that it

can describe more complicated motions than BBME such as

scale and rotation transforms. By utilizing the Markov Ran-

dom Field (MRF) model, the accuracy can be improved by

considering the neighboring motion relationships because in-

formation from highly textured regions can be propagated

into textureless regions and some wrong results in small areas

can be corrected with the help of neighboring pixels.

3.2 Outlier detection

Pixel-based ME can usually give the best estimation for each

pixel. However, due to scene changes, occlusions, back-

ground clutter and incorrectly calculated correspondence, the

best estimation result always contains outliers. Without de-

tecting the outliers, the enhanced results will produce artifacts

in corresponding regions.

The problem of outlier detection can be modeled as a con-

ditional probability

P(c|L,R;Ω), (4)

where L is the LQ frame, R is the warped HQ frames, and the

warping is performed according to the pixel-based ME re-

sults. c is each chosen pixel from the LQ frame or the warped

HQ frames. And,Ω is the outlier detection model parameters.

When the warped HQ frames are detected as outliers accord-

ing to Ω, the pixels will choose the LQ frame. Otherwise, the

pixels will choose the HQ frame enhancement details.

The best choice can be obtained by maximizing the condi-

tional probability, i.e.,

max
c∈{L,R}

P(c|L,R;Ω). (5)

4 Algorithm description of pixel-based
outlier-free motion estimation

In this section, the pixel-based outlier-free motion estimation

algorithm will be illustrated in detail.

4.1 Pixel-based motion estimation

The problem of pixel-based motion estimation between LQ

and HQ frames is equivalent to computing the MAP of

Bayesian labeling (see Eq. 3). This is similar to the optical

flow problem. The difference is that, different degrees of
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degradation introduced by encoding process and long frame

intervals between LQ frame and reference HQ frame mean

that the commonly used brightness constancy and spatial

smoothness assumptions in optical flow are not valid for cor-

respondence between the LQ frame and the reference HQ

frame. The key to solving this problem is how to model the

Bayesian labeling and how to define the model parameters

including data term and spatial term. MRF provides a tool

for analyzing spatial or contextual dependencies of physical

phenomena. According to the Hammersley Clifford theorem

[17], the model is an MRF if and only if the probability dis-

tribution of the configuration is a Gibbs distribution. So we

adopt MRF to model the problem. According to the Gibbs

distribution, we have

P(u|ΩS )P(L,H|u;ΩD)i = Z−1e−
E
T , (6)

where Z and T are constants, and the objective function is

E(u) = VD + VS . VD is the data term’s objective function and

VS is the spatial term’s objective function. Thus, the MAP

solution is found by

min
u∈S E(u), (7)

and a proper definition of data term VD and spatial term VS is

key to determining accurate correspondence between LQ and

HQ frames. As mentioned in previous work [18], we define

the spatial term VS as

VS =
∑

s∈S 4

||u − us||, (8)

where S 4 is the set of 4-neighbor pixels, and us is the mo-

tion vector of pixel s’s 4-neighbor pixels. This term can help

search for correspondence of pixels in textureless regions. In-

spired by the idea of SIFT flow as described in [19], we define

the data term VD as

VD =
∑

x

||s(L(x)) − s(R(x))||, (9)

where s(x) is the SIFT descriptor of pixel x, R(x) is the

warped HQ frame’s pixel, and L is the LQ frame. Because

SIFT has an accuracy advantage and is stability scale and ra-

diationally invariant, it can help measure intensity similar-

ity between two pixels, in spite of the effects introduced by

encoding process, projective transform due to motion, and

noises. The SIFT descriptor is initially designed to be utilized

to find correspondence among a large database of images. To

distinguish the feature among the database of images, only

a small part of the pixels is selected as feature points. How-

ever, in this paper case, the HQ and LQ frames are tempo-

rally correlated so we can estimate dense correspondence be-

tween them. In addition, we perform outlier detection when

selecting matching pixels for enhancement. Thus, the SIFT

descriptor is utilized at every pixel.

To solve the MRF, we adopt standard coarse-to-fine loopy

belief propagation (LBP) from [19] that significantly im-

proves performance. It roughly estimates the flow at a coarse

level of image grid, then gradually propagates and refines the

flow from coarse to fine. Details can be found in [19].

Even though optical flow methods always give a best esti-

mate for each pixel, we cannot use them directly in our work.

Due to the existence of occlusions and wrong estimations, not

all of the ME results are correct. So we need to detect these

outliers and avoid introducing them to the enhanced results.

To improve the performance of the pixel-based ME and make

the ME process outlier-free, we propose an outlier detection

method in the following subsection.

4.2 Outlier detection

The outlier detection problem is equivalent to the problem

of maximizing the conditional probability of Eq. (5). Be-

cause we utilize fast fourier transform (FFT) to divide the

HF and LF components to later replace the HF components

of each LQ frame with the HF components of the warped

reference HQ frame, the minimum computation unit in the

conditional probability is defined as a block instead of pixel.

To simplify the computation, we assume that the probability

that each block’s estimated correspondence contains outliers

is independent and identically distributed. So the problem can

be solved by calculating the maximum likelihood estimation

(MLE) of the conditional probability:

max
c∈{L,R}

∏

c

P(c|L,R;Ω), (10)

i.e., ∏

c

arg max
c∈{L,R}

P(c|L,R;Ω), (11)

where c is the choice from LQ and warped HQ frames of each

block according to outlier detection model. We can define the

likelihood P(c|L,R;Ω) as:

P(c|L,R;Ω) ∝ exp(−EOD(c|L,R;Ω)), (12)

where EOD(c|L,R;Ω) is the objective function to describe the

similarity between block c of LQ frame and the correspond-

ing block of the candidate warped reference HQ frame. Thus,

the calculation of MLE of Eq. (11) is equivalent to calculating

the minimum energy of the objective function, i.e.,

∏

c

arg min
c∈{L,R}

EOD(c). (13)
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The objective function considers two factors: 1) blocking

effects value if replacing the HF components of an LQ frame

in block c using HF components of the candidate warped

reference HQ frame’s block, and 2) the percentage of false

matching pixels in the SIFT field of each block. These two

terms are based on the observation that 1) if the ME result is

an outlier, replacing the HF components will produce signifi-

cant blocking effects, and that 2) the fewer matching pixels in

the SIFT field, the lower the probability that two blocks are

in the same scene. An example of the blocking effects caused

by outliers is shown in Fig. 4. In Fig. 4, we directly replace

the HF components of the HQ frame with HF components of

the LQ frame using FFT. Because we do not search for corre-

spondence and warp the HQ frame, the motion areas, i.e., the

face areas of the man, are outliers. As a result, as shown in

the enhancement result, the face areas produce many block-

ing effects.

Thus, we propose to define EOD as

EOD(b) = QBLK(b) + sBLK(b), (14)

where QBLK(b) is block b’s blocking effect value and sBLK(b)

is the percentage of false matching pixels in the SIFT field of

block b.

To evaluate the blocking effects, after block c’s HF com-

ponents are replaced by those of each candidate block, we

propose term QBLK to measure the blocking effects of the re-

constructed block, inspired by [20],

QBLK(b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
e

Ne(b)
De(b) : max

e

Ne(b)
De(b) < Tq, y � L;

Tq + 1 : max
e

Ne(b)
De(b) � Tq, y � L;

Tq : y ∈ L,

(15)

where e is one of the four edges of block b, y is the selection

from LQ or warped HQ frames, and Tq is the blocking effects

value threshold. At each edge of block b, as denoted in Fig.

3, we define N(b) and D(b) between blocks A and B as

Fig. 3 Example of blocking effects introduced by outliers. (a) LQ frame;
(b) HQ frame; (c) enhancement result by replacing HF components of HQ

frame to HF components of LQ frame directly

N(b) =
Lb∑

i=1

|ai1 − biLb |, (16)

and

D(b) = N(b) +
Lb∑

i=1

(
Lb−1∑

j=
Lb
2 +1

|bi( j+1) − bi j| +
Lb
2 −1∑

j=1

|ai( j+1) − ai j|),

(17)

where a and b are edge pixels, as shown in Fig. 3, Lb is the

length of the block edge.

To measure the percentage of false matching pixels in the

SIFT field, we propose another term sBLK . Comparing the dis-

tance of the closest neighbor with that of the second-closest

neighbor performs well and has been tested by much work in

the computer vision fields [21]. Inspired by this strategy, for

each pixel x in block b, except for the pixel itself, we search

for the pixel y with the most similar SIFT value in the whole

image W(H). If
s(x)
s(y)
< Tv, (18)

pixel x is a correct match. Otherwise, it is a false match. s(x)

is pixel x’s SIFT value. Tv is the matching threshold in the

SIFT field. The percentage of false matching pixels is Gp.

We define

sBLK =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Gp : Gp < Tp, y � L;

Tp + 1 : Gp � Tp, y � L;

Tp : y ∈ L,

(19)

where Tp is the threshold of false matching pixels. According

to the definition of sBLK and QBLK , Gp and max
e

Ne(b)
De(b) lie on

the range [0, 1]. According to Eqs. (15) and (19), if either of

QBLK or sBLK is larger than Tp or Tq, this block will not be se-

lected as the best match because the total energy will be larger

than the energy of choosing the block b itself, i.e., Tp + Tq.

Only if both of these two terms are lower than the threshold,

can the block be chosen as the best matching block. If all can-

didate blocks of the warped reference HQ frame are detected

as outliers, the minimum EOD will be that of the block c itself

and the reconstruction of this block will not be performed at

all. Otherwise, if there exist candidate blocks that are not out-

liers, the proposed algorithm will choose the block with the

minimum EOD and enhance the block of the LQ frame with

the chosen one.

5 Experimental results

In order to evaluate performance, we used popular H.264 and

high efficiency video coding (HEVC) test video sequences:
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four 352 × 288 sequences (Container, Hall, Mobile, News),

one 640×480 sequence (ParkScene), one 720×480 sequence

(Chromakey), and two 832× 480 sequences (BasketballDrill,

Flowervase). Of these videos, BasketballDrill, News, Hall

are of simple motions. Flowervase, ParkScene, Chromakey,

Container belong to projective motion, under scale or rota-

tion transform. Chromakey, ParkScene contain a lot of noise

and many outliers. Mobile contains large textureless regions.

The experiments are conducted on a Windows PC (Intel Core

2 Duo T6500 at 2.0 GHz with 3 GB of RAM). The imple-

mentation language is C++. The average processing time is

2.82 seconds per frame for 352 × 288 sequences, 7.06 sec-

onds per frame for 640 × 480 sequences, 8.79 seconds per

frame for 720 × 480 sequences, and 9.39 seconds per frame

for 832 × 480 sequences.

In the spatial scalability experiments, this paper sets the

scaling ratio to 2. To obtain the LQ frames, the original

frames are down-sampled by 2 at height and width and then

up-sampled to the original resolution with Bi-cubic interpo-

lation. In the quality scalability experiments, this paper sets

the QP difference between HQ and LQ frames to 5. The HQ

frames QP value is set to 37 while the LQ frames QP value

is set to 42. The videos are encoded and decoded by HEVC

HM6.0. The coding mode is lowdelay P. For each video,

there are two groups of pictures (GOP). the first GOP con-

sists of the first 30 frames encoded as HQ frames while the

second GOP consists of all of the following frames encoded

as LQ frames. In our experiments, all the algorithms utilize

the HQ frames to enhance the LQ frames.

We compared the proposed algorithm with a baseline,

motion-compensated super resolution (MSR) [3], learning-

based super resolution (LSR) [3], Hung et al.’s algorithm

[4], and Horn and Schunck’s (HS) pixel-based motion es-

timation algorithm [22]. The baseline algorithm is Bi-cubic

interpolation in spatial scalability and standard decoding in

quality scalability. Subjective quality as well as PSNR (peak

signal-to-noise ratio) and SSIM (structural similarity index)

are compared. To compare with HS, we first use HS to esti-

mate the motions between pixels of different frames. Then

HQ frame is warped according to the estimated motions.

Then, FFT is performed to divide the LQ frame and warped

HQ frame into HF and LF components to replace the HF

components of LQ frame with the HF components of warped

HQ frame. In Hung et al ME algorithm, a single matching

block size of 16 × 16 that provides the best performance was

evaluated. In implementing MSR, the motion search range for

MSR was vertically and horizontally set to 64 pixels. L × L

and M × M were set to 4 × 4 and 16 × 16, respectively. In

implementing LSR, K was set to 512. The parameters of our

proposed algorithm are listed below. Block size is 16 × 16,

blocking effects value threshold Tq in (15) is 0.5, matching

threshold in SIFT field Tv in Eq. (18) is 0.8, and the threshold

of false matching pixels Tp in Eq. (19) is 0.3.

Tables 1 and 2 show the PSNR and SSIM results of ap-

plying the proposed algorithm and the other algorithms to

all test videos in spatial scalability. Tables 3 and 4 show the

PSNR and SSIM results of applying the proposed algorithm

and the other algorithms to all test videos in quality scala-

bility. The first 30 frames of the sequences are encoded as a

training set of HQ frames, and the following frames are en-

coded as LQ frames that we propose to enhance. As shown

in Tables 1, 2, 3, and 4, our proposed algorithm gets better

PSNR and SSIM than all the other algorithms including the

baseline and the algorithms in ref. [3, 4, 22] for almost all

the test videos. The LSR and Hung et al algorithm could en-

hance better than the baseline for Container, News, Hall, and

BasketballDrill, while perform worse than the baseline for

Mobile, ParkScene, Flowervase, and Chromakey. MSR per-

forms relatively worse than LSR. HS performs well for News,

Hall, and BasketballDrill. But its performance for the other

sequences is not good.

Table 1 Average PSNR [dB] in spatial scalability, including the baseline, MSR, LSR, Hung et al. algorithm, HS, and the proposed algorithm

Sequence Resolution Baseline MSR LSR Hung et al.’s algorithm HS Proposed algorithm

Container 352x288 31.37 30.81 32.22 32.48 30.61 32.67

Hall 352x288 32.32 35.08 37.14 37.28 37.32 37.42

Mobile 352x288 27.06 26.81 26.42 27.02 26.21 27.41

News 352x288 33.62 34.29 35.78 36.29 36.33 36.11

Parkscene 640x480 35.83 31.27 33.91 34.56 30.85 37.27

Flowervase 832x480 33.51 32.24 32.67 33.40 32.07 34.71

Chromakey 720x480 31.56 29.75 30.87 31.41 30.37 31.55

BasketballDrill 832x480 36.06 35.75 38.60 38.62 38.65 39.67
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Table 2 Average SSIM in spatial scalability, including the baseline, MSR, LSR, Hung et al. algorithm, HS, and the proposed algorithm

Sequence Resolution Baseline MSR LSR Hung et al.’s algorithm HS Proposed algorithm

Container 352x288 0.86 0.79 0.88 0.88 0.78 0.90

Hall 352x288 0.91 0.88 0.96 0.96 0.96 0.98

Mobile 352x288 0.74 0.66 0.69 0.73 0.65 0.76

News 352x288 0.92 0.88 0.93 0.94 0.94 0.96

Parkscene 640x480 0.96 0.79 0.89 0.90 0.78 0.97

Flowervase 832x480 0.92 0.84 0.88 0.90 0.84 0.93

Chromakey 720x480 0.86 0.73 0.79 0.83 0.74 0.87

BasketballDrill 832x480 0.96 0.90 0.96 0.96 0.97 0.99

Table 3 Average PSNR [dB] in quality scalability, including the baseline, MSR, LSR, Hung et al. algorithm, HS, and the proposed algorithm

Sequence Resolution Baseline MSR LSR Hung et al.’s algorithm HS Proposed algorithm

Container 352x288 32.10 30.85 31.56 31.88 30.53 32.26

Hall 352x288 33.26 33.82 33.72 33.65 33.84 33.85

Mobile 352x288 27.37 27.15 26.72 27.25 26.61 27.38

News 352x288 32.75 32.08 32.67 32.72 32.78 32.91

Parkscene 640x480 31.37 30.03 31.20 31.25 29.89 31.35

Flowervase 832x480 34.23 32.71 32.26 33.61 32.01 34.17

Chromakey 720x480 29.80 29.15 29.13 29.74 29.31 29.80

BasketballDrill 832x480 32.42 32.02 32.15 32.62 32.62 32.64

Table 4 Average SSIM in quality scalability, including the baseline, MSR, LSR, Hung et al. algorithm, HS, and the proposed algorithm

Sequence Resolution Baseline MSR LSR Hung et al.’s algorithm HS Proposed algorithm

Container 352x288 0.83 0.80 0.81 0.81 0.80 0.84

Hall 352x288 0.86 0.85 0.87 0.87 0.87 0.88

Mobile 352x288 0.80 0.77 0.78 0.79 0.76 0.81

News 352x288 0.86 0.80 0.86 0.84 0.86 0.88

Parkscene 640x480 0.81 0.78 0.81 0.81 0.78 0.83

Flowervase 832x480 0.87 0.82 0.84 0.85 0.81 0.88

Chromakey 720x480 0.79 0.76 0.78 0.78 0.78 0.80

BasketballDrill 832x480 0.85 0.82 0.84 0.85 0.86 0.87

Fig. 4 PSNR performance with the change of down-sampling ratio of LQ frames for sequences (a) Hall and (b) News



Xuan DONG et al. A pixel-based outlier-free motion estimation algorithm for scalable video quality enhancement 9

For simple sequences such as BasketballDrill, News, Hall,

our algorithm and the algorithms of LSR, Hung et al. and HS

can enhance better than the baseline, and our algorithm gets

the best performance. This is because in simple sequences

where the motions between different frames are small and

simple, there are many pixels in HQ frames that can be used

to enhance LQ frames. So most algorithms can get better

PSNR and SSIM than the baseline. Since the proposed al-

gorithm can exploit more correct motions and avoid more

wrong motions, our algorithm achieves the best performance.

For complicated sequences such as Chromakey, ParkScene,

Flowervase, Mobile, the proposed algorithm can also get bet-

ter or equal PSNR and SSIM compared with the baseline,

while MSR, LSR, Hung et al.’s algorithms and HS are not al-

ways as good as the baseline. This is because in complicated

sequences where motions between different frames are large

and complicated, there are not many pixels in HQ frames that

can be used to enhance LQ frames. So the improvement of

our algorithm becomes smaller. In the quality scalability case,

since the quality differences between HQ and LQ frames are

small in our experiments, for each matching pixel, the im-

provement is not significant. As a result, for complicated se-

quences in quality scalability, the improvements will be lim-

ited. Due to the outlier-detection module, performance of the

proposed algorithm is almost equal to the baseline while the

other algorithms are sometimes worse than the baseline. In

short, we notice the robustness and effectiveness of our algo-

rithm. When there are few pixels that can be enhanced, the

robustness of our proposed algorithm can get equal perfor-

mance to that of the baseline while MSR, LSR, Hung et al.’s

algorithm and HS perform worse than the baseline due to out-

liers in the ME results. When there are many pixels that can

be enhanced, our proposed algorithm achieves much higher

performance than the baseline, MSR, LSR, Hung et. al algo-

rithm, and HS.

In Figs. 5 and 6, we also show the PSNR and SSIM per-

formance of different algorithms with the change of down-

sampling ratio in spatial scalability. The video sequences are

Hall and News. As shown in Figs. 5 and 6, when the down-

sampling ratio becomes smaller, MSR, LSR, Hung et. al algo-

rithm, HS and our algorithm achieve higher quality improve-

ment than the baseline because the quality of HQ frames be-

comes better than the quality of LQ frames. When the down-

sampling ratio becomes larger, MSR, LSR, Hung et.al algo-

rithm and HS will get less quality improvement or even worse

results than the baseline because the differences between HQ

and LQ frames become smaller and there might be some out-

liers in ME results. However, the proposed algorithm can al-

ways perform better than the other algorithms and even the

LQ frames have the same quality with HQ frames, the pro-

posed algorithm will not get worse results than the baseline.

This is because our outlier detection model can avoid intro-

ducing outliers in the ME results.

Fig. 5 SSIM performance with the change of down-sampling ratio of LQ
frames for sequences (a) Hall and (b) News

Fig. 6 SSIM performance with the change of down-sampling ratio of LQ
frames for sequences (a) Hall and (b) News
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Figures. 7, 8, and 9 show the subjective results of our pro-

posed algorithm and the other algorithms. In Fig. 7, results

of MSR, LSR, Hung et al algorithm and HS produce arti-

facts in textless regions, while the results for our algorithm

are accurate. This is because for textureless regions, our al-

gorithm propagates information from highly textured regions

into neighboring regions and achieves global optimization by

solving spatial term of Eq. (8). In comparison, the other algo-

rithms do not take neighbor relationship into consideration,

leading to artifacts in textureless regions. This not only de-

creases the PSNR, but has negative subjective effects. In Fig.

8, results of MSR, LSR and Hung et al. algorithm fail to en-

hance the face due to rotation. HS can enhance some areas of

the face but also introduce some artifacts at the edge region

of the face and the background region. The result of our al-

gorithm contains more detail and sharpness in the face region

without introducing artifacts. This is because pixel-based ME

can deal with rotation and scale transforms and our algorithm

is robust to outliers. Although the PSNR is not much higher

than the baseline due to the limited area for enhancement,

we can see that our algorithm outperforms the baseline and

other algorithms in subjective quality. In Fig. 9, the results

of the other algorithms produce many artifacts in the region

of greens, while our algorithm avoids introducing artifacts.

This is because the outlier detection module helps detect and

avoid outliers in the ME results. In the regions of background

greens, recognizing outliers is difficult because the details are

too complicated. A simple method such as SAD is not accu-

rate enough to detect them. Our algorithm solves this well

and few artifacts are produced because the correct match in

the SIFT field and blocking effects detection can efficiently

recognize the outliers. However, the results of the other algo-

rithms exhibit many artifacts in the regions of green. This not

only causes a large PSNR decrease, but also greatly affects

the subjective quality. To sum up, because the problems of

projective transforms, outliers, textureless regions, and noise

are well solved, our algorithm can get more area enhanced

and avoid artifacts, resulting in the higher objective and sub-

jective quality.

Fig. 7 Decoding result of one frame of sequence Mobile. (a) Resutt of the baseline; (b) MSR; (c) LSR; (d) Hung et al. algorithm; (e) HS; (f) Our algorithm

Fig. 8 Decoding result of one frame of sequence Chromakey. (a) Resutt of the baseline; (b) MSR; (c) LSR; (d) Hung et al. algorithm; (e) HS; (f) Our
algorithm

Fig. 9 Decoding result of one frame of sequence ParkScene. (a) Resutt of the baseline; (b) MSR; (c) LSR; (d) Hung et al. algorithm; (e) HS; (f) Our
algorithm
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Figures. 10 and 11 show the PSNR with frame number.

This directly shows how the algorithms perform as frame

number increases. For motion sequences such as Container,

the PSNR gains decrease when the frame number increases.

This is because the region available to be enhanced decreases

when the frame number increases. Because our algorithm

is more accurate for a variety of motions, the PSNR gains

are higher than the other algorithms. In addition, for com-

plicated sequences such as ParkScene, because our method

takes the factors of outliers into consideration, it can enhance

LQ frames for longer. Even if there is no area available to be

enhanced, our algorithm will not reduce the decoded video

quality. And, because the other algorithms are not robust

to outliers, their performance is even lower than the perfor-

mance of the baseline. For noisy sequences such as Basket-

ballDrill where the background light changes over time, our

algorithm, LSR, Hung et al’s algorithm and HS perform bet-

ter than MSR and the baseline. This is because they enhance

the details of a block by replacing the HF components of the

block instead of replacing the whole block. This helps avoid

introducing in noise in LF components. To sum up, when the

movements between HQ and LQ frames are small, the en-

hancement areas will be large and the enhancement is always

noticeable, but when the movements are large, for example,

when new objects or scenes appear, the enhancement areas

will decrease because there is no correspondence between

HQ frames and the new objects of LQ frames.

30 human observers were asked to rate enhanced videos of

the different algorithms and the mean opinion score is calcu-

lated to show the benefits of our algorithm. The scores range

from 1 (worst) to 5 (best). Both scenarios of spatial scalabil-

ity and quality scalability are tested with the algorithms of

the baseline, Hung et al., MSR, LSR, HS and our algorithm.

The results are shown in Table III. As shown in the table, our

algorithm’s results have higher subjective quality.

Fig. 10 PSNR/Frame number performance of our algorithm, Hung et al. algorithm, MSR, LSR, and HS in spatial scalability for (a) Container, (b)
Parkscene, (c) BasketballDrill

Fig. 11 PSNR/Frame number performance of our algorithm, Hung et al. algorithm, MSR, LSR and HS in quality scalability for (a) Container, (b)
Parkscene, (c) BasketballDrill
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Table 5 Mean opinion score given by human observers for different algo-
rithms in scenarios of spatial scalability and quality scalability

Spatial scalability Quality scalability

Baseline 3.1 2.5

Hung et al. 3.7 2.9

MSR 2.6 2.1

LSR 3.3 2.7

HS 3.2 2.5

Our algorithm 4.1 3.3

6 Conclusions and future work

We have proposed a pixel-based outlier-free motion estima-

tion algorithm for enhancing scalable video quality. Based on

the observation that neighboring pixels in space should often

have similar motions, our proposed method searches for cor-

respondence between HQ and LQ frames for each pixel by

computing the MAP of a Bayesian Labeling. This method is

capable of searching for correspondences with scale and rota-

tion transforms and improving the ME accuracy in textureless

regions. In addition, our algorithm will detect motion outliers

by taking blocking effects and matching percentage in SIFT

field into consideration so as to get outlier-free ME results.

Our experimental results demonstrate that our algorithm pro-

vides significantly better subjective visual quality as well as

higher objective quality than previous algorithms with the im-

provement of rideo quality, many high-level visionproblems

can also be better solved, such as Ref [23–27].

Our future work will include the acceleration of our al-

gorithm. Although processing is not real-time at present,

our algorithm can be accelerated by parallel processing in the

future since the enhancement of different frames are indepen-

dent. A possible solution is to use the GPU for acceleration.
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