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a b s t r a c t 

In the dual-lens system with monochrome and color cameras, the gray image captured by the 

monochrome camera has better quality than the color image from the color camera, but does not have 

color information. To get high-quality color images, it is desired to colorize the gray image with the color 

image as reference. Due to occlusions, the colorization will inevitably fail in some cases. Thus, evaluating 

the colorization quality is also of great importance. We solve both problems in this paper. For coloriza- 

tion, we propose a gray-color correspondence prior, i.e. in local regions, if two patches are similar in the 

gray channel, it is very often that the two pixels centered at these two patches have similar colors. Based 

on this prior, a deep learning based and coarse-to-fine colorization method is proposed. For evaluating 

the colorization quality, we propose a symmetry colorization based evaluation method. Experimental re- 

sults show that our method could largely outperform the state-of-the-art methods and is also efficient in 

computation. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The dual-lens system with one monochrome camera and one

color camera has been widely used in popular smart phones, e.g.

Huawei P9 and P10. In the dual-lens system, the monochrome

camera has better light efficiency than the color camera [1,2] , so

the image captured by the monochrome camera has higher qual-

ity (i.e. signal-to-noise ratio) than the image from the color cam-

era, but does not have color information. To shoot high quality

color images using dual-lens systems, it is desirable to colorize the

gray images from the monochrome camera with the color images

from the color camera as reference, so that the colorized images

have high quality in the monochrome channel and correct colors

as well. An example is shown in Fig. 1 . However, due to occlusions

between the pair of images, the colorization could not have cor-

rect results all the time. In these cases, the input color image from

the color camera (with lower quality in the monochrome channel

but correct colors) could be used as an alternative choice for the

output color image. So, it is also desired to evaluate the coloriza-

tion quality to make the choice. In this paper, we deal with both

problems, i.e. colorization in the dual-lens system and colorization

quality evaluation. 
∗ Corresponding author. 

E-mail address: weixinli@buaa.edu.cn (W. Li). 
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In the literature, the stereo matching based colorization method

1] is a straightforward solution for dual-lens colorization. How-

ver, we observe that there are big differences between estimating

orrect disparity values and colorization. For a given pixel, there

ay exist multiple pixels in the reference image that could pro-

ide correct color values, especially in repeated texture regions and

extless regions (e.g. blue sky, white wall, etc.). Some examples are

hown in Fig. 3 . Because any of these pixel could help us obtain

orrect colorization result, searching for the pixels with correct dis-

arity values using the computation consuming stereo matching

ethods is unnecessary. Thus, we propose a new method to do

he colorization without estimating disparities of pixels between

he pair of images. 

Our insight is the observation that in local regions of images, if

wo patches are similar in the gray channel, it is very often that

he two pixels centered at these two patches have similar colors,

o matter whether the centered pixels have correct disparity. We

ame this statistics-based property as the gray-color correspon-

ence prior in this paper. This prior inspires us that, for each patch

n the input gray image, any similar patches in the reference im-

ge, no matter whether with the correct disparity or not, can pro-

ide correct color for colorization. So the computationally costly

ull stereo matching can be omitted. 

Motivated by the prior, for each patch in the input image, we

ropose a convolutional neural network, called color similarity net-

ork, to search for patches with correct colors in the reference

https://doi.org/10.1016/j.neucom.2019.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.04.007&domain=pdf
mailto:weixinli@buaa.edu.cn
https://doi.org/10.1016/j.neucom.2019.04.007
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Fig. 1. An example of the colorization in the dual-lens system. The input images are captured by the dual-lens system of Huawei P9 phone. And the colorization result, 

which has high quality in the monochrome channel and correct colors, is used as the output color image of the dual-lens system. 

Fig. 2. Pipeline of our work. First, we propose a coarse-to-fine colorization method, which down-samples the input pair, performs the deep learning based colorization for 

the low resolution pair, and upsamples the colorization result using the original input gray image as guidance. Second, from the colorization result and the input color image 

captured by the color camera, we select which should be output by evaluating the colorization quality. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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mage. We also use a color propagation method to colorize oc-

luded pixels where no patches with correct colors exist in the

eference image. In addition, we propose a convolutional neu-

al network, called coarse-to-fine colorization network, to per-

orm coarse-to-fine colorization for further acceleration. The whole

ystem uses the color similarity network and color propagation

ethod to perform the reference-based colorization at the low

esolution and then uses the coarse-to-fine colorization network

o upsample the coarse colorization result with the original input

ray image as guidance. 

To evaluate the colorization quality, we propose a symmetry

olorization based evaluation method, according to our observation

f the symmetry property of colorization. This enables us to select

he output color image in the dual-lens system from either the col-

rized image or the original color image from the color camera.

he pipeline of the proposed algorithm in this paper is shown in

ig. 2 . 

Experimental results show that our method could largely out-

erform the state-of-the-art algorithms and is also efficient in

omputation. 

Our contributions include: (1) we propose the gray-color cor-

espondence prior for monochrome-color dual-lens colorization.
 c  
2) We propose the color similarity network for reference-based

olorization. (3) We propose the coarse-to-fine colorization net-

ork for accelerating the colorization. And (4) we propose the

ymmetry colorization based method for evaluating the coloriza-

ion quality. 

. Related work 

In the literature, there exist three kinds of colorization al-

orithms, including automatic colorization, scribble-based col- 

rization, and reference-based colorization. Automatic colorization 

lgorithms [3,4] directly colorize gray images without any refer-

nce. Using them in our case is not proper because the reference

olor image, which provides much useful color information, will

ot be utilized. Scribble-based colorization algorithms [5,6] need

sers to input some scribbles as guidance for colorization. Because

ser input is not available in the camera system, these algorithms

re not suitable for our case too. Reference-based colorization

1,7–10] is related to our problem. But most of them have different 

ssumptions from our problem. Between the input and reference

mages, the methods in [7–9] only assume that a small part of

ontents or even no content are the same, and the images usually
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Fig. 3. Examples to show there usually exist several similar pixels (marked in green) in the reference image that could provide correct colors for a given pixel (marked in 

red) in the input gray image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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just share similar ‘mood’. The method in [10] assumes that the im-

ages are manga images but in our problem the images are general

images. Due to different assumptions of the input pairs of images,

these methods cannot obtain competing results for our problem.

A straightforward solution for colorization in the dual-lens system

is to estimate the disparity between the pair of images, and then

colorize the gray image using the estimated disparities and the

color image, as is done in [1] . But, as mentioned in Section 1 ,

pixels that could provide correct colors may not have correct

disparity values. And it is not necessary to estimate disparity for

our problem. We compare with these methods and analyze their

weakness respectively in more details in Section 6 . 

Our gray-color correspondence prior shares similar insights

with self-similarity based super resolution [11] and non-local

based image denoising [12,13] , i.e. the fractal nature of images

[14] suggests that patches of a natural image recur in the same

image. So, the enhancement of a patch could benefit from all of its

similar patches. Similarly, in our problem, based on the prior, all

the patches with correct colors in the reference image, no matter

with correct disparity or not, can help the colorization. 

To select the output color image, automatically evaluating the

colorization quality in the dual-lens system is of great importance.

But there is no related work in the literature to the best of our

knowledge. 

3. The gray-color correspondence prior 

The dual-lens system of the smart phone is similar with stereo

system [15] , where for each pixel in the input gray image, its cor-

responding pixel in the reference image is with the same vertical

position but different horizontal position due to disparity. So, in

our problem, for each patch in the input gray image, it has high

probability that the patches with correct color are with the same

vertical position but different horizontal position. Thus, when we

search for similar patches in the reference image for each patch

in the input gray image, the search range is defined as the patches

with the same vertical positions and the position differences in the

horizontal position is from 0 to d − 1 . The constant value d is the

maximum position difference in the horizontal direction ( d is set

as 30% of the image width). This motivates us to explore the prop-

erty of the pixels in the search range. 
We propose the gray-color correspondence prior that, in the

earch range, if two patches are similar in the gray channel, it is

ery often that the two pixels centered at these two patches have

imilar colors. An example is shown in Fig. 3 . 

To formally describe the observation, we define 

 

MD ( x ) = max 
y ∈ S(x ) 

|| C x − C y | | 2 , (1)

here J MD ( x ) measures the maximum color differences of the cen-

ered pixels between patch x and all the patches in S ( x ). The colors

f the centered pixels of patch x and y are C x and C y , respectively.

 is a patch in the input gray image and within the search range in

he reference image corresponding to patch x , all patches that are

imilar with x in the gray channel consist of the set S ( x ). Formally,

or any patch y in S ( x ), 
|| Y x −Y y | | 2 | �(x ) | < ε, where | �( x )| is the number of

ixels in the patch x , and the patch size is 30 × 30 in this paper. Y x
epresents the gray intensities of pixels in the patch x in a vector,

nd ε is a small constant value. According to our observation, for

ny patch that belongs to S ( x ), the colors of their centered pixels

hould be similar, so J MD ( x ) tends to be zero. 

The reasons that the prior is effective in most cases are as fol-

ows. (1) If two objects with different colors are under different

ighting conditions, because the lighting conditions are different,

atches from the two objects will mostly have different gray in-

ensities. (2) Assuming that two objects with different colors are

nder the same lighting condition. According to the physics of

olor [17] , different colors are caused by different wavelengths of

lectromagnetic radiation and different wavelengths will result in

ifferent intensities of the electromagnetic radiation. So, if two

atches are from the two objects that have different colors and

re under the same lighting condition, their gray intensities will

e different. 

To verify how good our prior is, we test it using 10,0 0 0 ran-

omly selected images in the ImageNet dataset [16] . Using Eq. (1) ,

e compute the J MD values of all pixels in the images. And the dis-

ribution of J MD values is shown in Fig. 4 (a). Some example images

nd their J MD maps are shown in Fig. 4 (b). The dynamic range of

he images is [0, 255], and the images are in YCbCr color format.

rom the figures, we can see that about 60% of the pixels have

ero J MD values and more than 90% of the pixels have J MD values

ess than 2. The example images also show that J MD maps are very

ark. These give very strong supports to our prior. 
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Fig. 4. Verification of the gray-color correspondence prior. J MD measures the maximum color differences between the centered pixels of patches that share similar gray 

intensities in local regions. As shown, the J MD values in (a), which are obtained using images in the ImageNet dataset [16] , are very low and tend to be zero for most pixels. 

And the J MD maps in (b), whose values are multiplied by 10 for better visualization, are very dark too. For more details, see Section 3 . (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. The architecture of the color similarity network. It is a siamese network for 

estimating the color similarity score of two patches. The sub-networks are com- 

posed of 8 residue blocks [18] with Batch Normalization and ReLu following all lay- 

ers but the last layer. Each residue block has 2 convolutional layers and the residue 

connection. The similarity score is obtained by extracting a vector from each of the 

two input patches and computing the cosine similarity between them. The cosine 

similarity computation is split in two steps: normalization and dot product for im- 

proving computation efficiency. 
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In seldom cases, the prior is not correct because it is possible

hat two patches with different colors are in different lighting con-

itions, and the difference of the lighting conditions happens to

ompensate for the difference of the waves’ energy of the different

olors, leading to the patches having different colors but the same

ray intensity. Our evaluation method in Section 5.1 considers this

ossibility. We will select out these cases to avoid failed coloriza-

ion. 

. Colorization in the dual-lens system 

Based on the gray-color correspondence prior, we propose an

fficient colorization algorithm in this section. The challenge is

hat, due to different light efficiency between monochrome and

olor cameras, the same scene will have different intensities in the

onochrome image and the gray channel of the color image. 

Traditional reference-based colorization algorithms, such as

7,8] , usually use hand-crafted features of the patch to search for

he matching patches. We propose a ResNet [18] based convolu-

ional neural network, called color similarity network (shown in

ig. 5 ), to extract the deep features of patches and use them for

earching similar patches. For each patch in the input gray image,

ts search range in the reference image accords with the search

ange of the aforementioned gray-color correspondence prior, i.e.

he patches with the same vertical positions and the position dif-

erences in the horizontal position is from 0 to d − 1 . It is pos-

ible that no patches in the reference image could provide cor-

ect colors due to occlusions, so we use the color propagation

ethod [6] to colorize occluded pixels. For further accelerating

he colorization, we propose the coarse-to-fine colorization net-

ork (shown in Fig. 6 ). We do the reference-based colorization at

he low resolution to obtain the coarse colorization result. Then,

he coarse-to-fine colorization network upsamples the coarse re-

ult with the original-resolution gray image as guidance. 

.1. Colorization 

First, we propose the color similarity network to extract the

eatures of patches for measuring the color similarity of different

atches. As shown in Fig. 5 , the input to the proposed network

s a pair of image patches and the output is a measure of the

olor similarity between the centered pixels of the two patches.

he architecture is a siamese network, i.e. two shared-weight sub-
etworks joined at the head [15] . The sub-networks are composed

f a number of residue blocks [18] with Batch Normalization and

eLu following all layers but the last layer (in this paper, each sub-

etwork has 8 residue blocks. Each residue block has 2 convolu-

ional layers and the residue connection). Both sub-networks out-

ut a vector capturing the feature of the input patch. And the re-

ulting two vectors are compared using the cosine similarity mea-

ure so as to get the final output of the network. The proposed

etwork is similar with the stereo matching method [15] . The dif-

erences are (1) our network is based on ResNet [18] which has

roven to be effective for related problems, e.g. super resolution

19] , etc. (2) In the training, we label the similarity of each pair

f patches by their color similarity while the method of [15] la-

els the similarity by the ground-truth disparity. As explained in
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Fig. 6. The architecture of the proposed coarse-to-fine colorization network. 
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Section 1 , color and disparity are different things, and the same

pair of patches may have different labeling values in these two

cases. 

To build the training set, for each patch x in the input gray im-

age, one positive patch y 1 and one negative patch y 2 in the ref-

erence image are used in training. The positive pair (x , y 1 ) is la-

beled as 1, while the negative pair (x , y 2 ) is labeled as 0. We judge

the positive and negative patches by their color differences with x .

Specifically, the color differences between the centered pixels of

x and y 1 are less than m , while the color differences between the

centered pixels of x and y 2 are greater than m ( m is set as 2 in this

paper). For each patch x , the search range of positive and negative

patches is the patches in the reference image that have the same

vertical position but the differences in the horizontal position is

from 0 to d − 1 . Usually, there exist multiple positive and negative

patches and y 1 and y 2 are randomly selected from the positive and

negative patches, respectively. 

The proposed network is efficient in computation. To search for

the best-matching patches, we just need to run the sub-networks

once on each image to extract the features of all pairs of patches

and run the dot product of the feature vectors d times. 

Using the proposed features, for each patch in the input gray

image, we search for its best-matching patch in the search range of

the reference image. But, occlusion regions usually exist between

the image pair. And it is possible that no patches in the reference

image could provide correct color, so the best-matching patches

still have small similarity score. If the best-matching patch has

high similarity score, we see them as located in high confidence

regions. Otherwise, the patches belong to low confidence regions.

For high confidence regions, we directly colorize the centered pix-

els of the patches using the color of the best-matching ones in the

reference image. For low confidence regions, we adopt the method

in [6] to propagate colors using the surrounding colorized regions.

The optimization-based interpolation in [6] uses partial color infor-

mation as seed colors to propagate colors to the complete image.

In our work, the colors of the colorized pixels in high confidence

regions are used as the seed colors. The reader is referred to [6] for

further details. We set a constant threshold value T = 0 . 75 in this

paper. If the similarity score of the best-matching patch is lower

than T , we will see the patch with low confidence. Otherwise, the

patch is with high confidence. 

4.2. Coarse-to-fine colorization 

For acceleration, we propose the coarse-to-fine colorization net-

work to perform coarse-to-fine colorization. We share similar in-

sights with [6] that neighboring pixels with similar gray intensities

should have similar colors, and the input gray image Y could pro-

vide guidance of spatial color consistency. Our method is based on

the deep joint filter [20] . Our difference from [20] is that (1) we

use ResNet [18] instead of traditional 2-D convolution due to good

performances of ResNet in related problems, and (2) we learn the
esidue between the ground truth color image and the rough col-

rization result, because learning the residue map has proven to be

ore effective in related works, e.g. single image super resolution

21] . 

Formally, we use the input gray image Y as guidance to correct

he rough result C 

′ 
by 

 = C 

′ + �( C 

′ , Y ) , (2)

here � denotes the operation of the coarse-to-fine colorization

etwork. 

As shown in Fig. 6 , the rough colorization result C 

′ and the in-

ut gray image Y are fed into two ResNets, named ResNet1 and

esNet2, to get their features G 

C ′ and G 

Y , respectively. Then, G 

C ′ 

nd G 

Y are concatenated to form the feature map G , which is fed

nto another ResNet, named ResNet3, to get the residue color map

( C 

′ , Y ). By adding C 

′ and the residue color map �( C 

′ , Y ), the fi-

al colorization result C is obtained. The coarse-to-fine colorization

etwork can be seen as a high dimension joint filter. 

ResNet1 has 16 convolution layers in total. The 16 layers are 8

epeated residue blocks and each residue block consists of 2 con-

olution layers with 3 × 3 kernel and a residue connection. Batch-

orm layers and ReLu layers are added after each of the con-

olution layers except the last layer. The 16th layer is a convo-

ution layer with 3 × 3 kernel and no BatchNorm layer or ReLu

ayer is added. The filter number the 16 layers of ResNet1 is a

yper-parameter which is set as 32 in this paper. ResNet2 has the

ame network structure as ResNet1. ResNet3 has similar structure

ith ResNet1. The difference between ResNet3 and ResNet1 is that

n the last layer the filter number is 1 and no BatchNorm layer

r ReLu layer is added. The parameters of ResNet1, ResNet2, and

esNet3 are trained separately. 

As shown in Fig. 2 , we firstly perform the colorization at the

oarse level, i.e. the down-sampled resolution, and then up-sample

he low resolution colorization result to the fine level, i.e. the orig-

nal resolution, with the guidance of the original input gray image.

n this paper, the downsampling and upsampling ratio is 5 × 5. 

. Colorization quality evaluation 

We judge whether the input color image accords with the gray-

olor correspondence prior in Section 5.1 . In addition, we propose

he symmetry colorization based method to evaluate the coloriza-

ion quality in Section 5.2 . 

.1. Evaluation using the gray-color correspondence prior 

Since our colorization method is based on the gray-color corre-

pondence prior, the first step of evaluating the colorization quality

s to judge whether the input color image accords with the gray-

olor correspondence prior. We compute the J MD values of all pix-

ls in the input color image according to Eq. (1) , and then com-

ute the maximum J MD value of all pixels. When the maximum J MD 
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Fig. 7. Pipeline of the symmetry colorization method, which uses the gray image as reference to colorize the de-colored image of the color image. First, we search for 

best-matching patches and compute the confidence map. Second, for pixels in high confidence regions, we recover their colors using the ground-truth values from the color 

image. Third, for pixels in low confidence regions, their colors are propagated by surrounding colorized pixels. The first and third steps are the same as the colorization in 

Section 4.1 . See more details in Section 5.2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Analysis of the qualities of colorization results in low and high confidence 

regions separately. The higher PSNR (Peak Signal to Noise Ratio) values indicate bet- 

ter colorization quality. As shown, the colorization qualities in high confidence re- 

gions are always high enough and can be seen as correct colorization results, while 

the colorization qualities in low confidence regions vary a lot and need to be eval- 

uated. See more details in Section 5.2 . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Two setups of the colorization benchmark. We simulate the monochrome-color 

dual-lens system by adding signal dependent Gaussian noise with a given standard 

deviation where κ represents the noise-free signal intensity [28] . 

Noise std. Color camera Monochrome camera 

Setup1 0.03 
√ 

κ 0.01 
√ 

κ

Setup2 0.07 
√ 

κ 0.01 
√ 

κ

a  
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w  
alue is higher than a threshold, which is set as 10 in this paper,

e see this image as an outlier to the gray-color correspondence

rior. For outliers to the prior, the colorization results will not be

eliable, so we directly output the input color image, without per-

orming the colorization algorithms. 

.2. Symmetry colorization based evaluation 

The challenge of evaluating the quality of the colorization result

s the lack of the ground-truth color image. Our insight for solv-

ng this problem is the symmetry property of colorization, i.e. the

olorization quality should be similar when colorizing the left im-

ge with the right one as reference or colorizing the right image

ith the left one as reference. Based on the symmetry property,

e propose to do the colorization at the opposite direction, i.e. de-

oloring the input color image and colorizing the de-colored image

sing the input gray image as reference. Thus, the input color im-

ge itself can be used as the ground-truth color image to evaluate

he colorization quality. This method is called the symmetry col-

rization method in this paper, and the pipeline is shown in Fig. 7 .

The difficulty of the symmetry colorization method is that,

ince the reference image is gray, for high confidence regions ac-

ording to the searching results, the corresponding pixels in the

eference image do not have color information. To solve this prob-

em, firstly, we analyzed the quality of the colorization results

n low and high confidence regions separately in the Cityscapes

ataset. As shown in Fig. 8 , the PSNR (Peak Signal to Noise Ra-

io) values of the colorization results’ high confidence regions are
lways higher than 43 dB, but the low confidence regions’ values

ange from 37 dB to 47 dB. This statistic indicates that the coloriza-

ion qualities in high confidence regions are always high enough

hile the colorization qualities in low confidence regions vary a

ot. So, colorization results in high confidence regions can be seen

s correct directly without evaluation, and we only need to evalu-

te the colorization quality in low confidence regions. To do so, we

ssume that if the reference image has color information, the col-

rs will be the correct ones for the pixels in the high confidence

egions. Thus, we assign the ground-truth colors to high confidence

egions directly using the input color image. Then, we propagate

olors to low confidence regions using the surrounding colorized

ixels, which is the same as the propagation in Section 4.1 . After

etting the result of the symmetry colorization, we can evaluate

he colorization quality using the ground-truth color image. 

We test the correlation between the symmetry colorization

ased evaluation and the ground-truth colorization quality using

he metric of PSNR. The linear correlation coefficient can achieve

.93 on average over all the five datasets in our experiment. This

igh correlation indicates the accuracy of the proposed evaluation

ethod. 

. Experimental results 

.1. Datasets and experimental environment 

We use five popular stereo datasets in our experiments, namely

ityscapes [23] , KITTI [24] , Middlebury 2006 [25] , Middlebury 2014

26] , and Sintel [27] . These datasets contain pairs of color images

aptured by the dual-lens system with two color cameras. For re-

listic simulations, following [1] , within each pair of images, we

e-color one image and use the de-colored result as the input

onochrome image, and the other color image is used as the in-

ut color image. In addition, we imitate the light-efficiency differ-

nces between color and monochrome cameras by adding differ-

nt amount of noises to the monochrome input images and color

nput images. We configured two different setups for this experi-

ent. The details are summarized in Table 1 . 

The proposed deep convolutional networks are implemented

ith Torch and the other processing modules are implemented
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Table 2 

Average PSNR values of different colorization methods in the five datasets under Setup1 in Table 1 . The higher PSNR values indicate better colorization quality. ‘MB’ is short 

for Middlebury. 

PSNR (dB) Welsh et al. [7] Ironi et al. [8] Gupta et al. [9] Jeon et al. [1] Furusawa et al. [10] Zhang et al. [3] Iizuka et al. [4] Ours 

Cityscapes 37.89 38.45 38.09 39.33 34.74 29.38 31.30 40.86 

KITTI 33.50 35.80 35.31 36.26 27.88 28.35 27.58 36.63 

MB2006 31.28 32.98 32.04 36.80 30.86 29.12 29.19 38.60 

MB2014 30.12 32.24 31.65 32.32 29.44 17.26 22.02 37.14 

Sintel 34.94 36.06 35.45 36.12 32.13 29.34 33.97 39.26 

Table 3 

Average PSNR values under Setup2 in Table 1 . 

PSNR (dB) Welsh et al. [7] Ironi et al. [8] Gupta et al. [9] Jeon et al. [1] Furusawa et al. [10] Zhang et al. [3] Iizuka et al. [4] Ours 

Cityscapes 35.06 35.68 34.53 35.38 32.91 29.57 31.39 40.21 

KITTI 31.92 32.96 33.04 33.50 28.79 28.32 27.39 36.48 

MB2006 29.60 25.42 31.72 31.75 29.52 28.41 28.42 37.30 

MB2014 28.83 27.56 28.73 29.78 28.07 18.56 23.13 36.16 

Sintel 32.70 32.52 33.31 33.98 32.01 29.44 34.02 38.71 

Table 4 

Average SSIM values of different colorization methods in the five datasets under Setup1 in Table 1 . The higher SSIM values indicate better colorization quality. 

SSIM Welsh et al. [7] Ironi et al. [8] Gupta et al. [9] Jeon et al. [1] Furusawa et al. [10] Zhang et al. [3] Iizuka et al. [4] Ours 

Cityscapes 0.8971 0.8976 0.9488 0.9532 0.8417 0.4606 0.7572 0.9772 

KITTI 0.7941 0.9294 0.9329 0.9688 0.7605 0.7517 0.8084 0.9776 

MB2006 0.9063 0.9408 0.8969 0.9786 0.8603 0.7468 0.6772 0.9876 

MB2014 0.8331 0.9008 0.8796 0.9578 0.8055 0.2897 0.4214 0.9712 

Sintel 0.7959 0.9183 0.9333 0.9437 0.7945 0.6872 0.8526 0.9709 

Table 5 

Average SSIM values under Setup2 in Table 1 . 

SSIM Welsh et al. [7] Ironi et al. [8] Gupta et al. [9] Jeon et al. [1] Furusawa et al. [10] Zhang et al. [3] Iizuka et al. [4] Ours 

Cityscapes 0.8492 0.7781 0.9061 0.9142 0.8252 0.4553 0.7517 0.9645 

KITTI 0.7609 0.8608 0.8776 0.9180 0.7603 0.7511 0.7983 0.9721 

MB2006 0.8765 0.7151 0.8938 0.9530 0.7827 0.7520 0.6882 0.9817 

MB2014 0.7890 0.7675 0.7706 0.9225 0.7542 0.3030 0.4344 0.9592 

Sintel 0.7580 0.8146 0.9059 0.9243 0.7284 0.6882 0.8526 0.9661 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

t  

W  

F  

t  

t  

a  

i  

e  

S  

t  

t  

w  

d  

a  

s

 

s  

A  

A  

f  

g  

a  

h  

c  

t  
with Python. The experiments are performed on an Intel I7

2.6 GHz machine with 8GB memory and an NVIDIA Titan-X GPU. 

When we train the color similarity network, the input to the

network is a batch of 128 pairs of image patches. The loss func-

tion we use is the mean squared error between the prediction re-

sult and the ground-truth annotation. We minimize the loss us-

ing mini-batch gradient descent with the momentum term set

to 0.9. We train for 20 epochs with the learning rate set to

0.001. We train the color similarity network on the datasets of

Middlebury 2006 and 2014, which contains 38 million examples.

When testing the performance on the datasets of Cityscapes, KITTI,

and Sintel, we directly use the model trained on Middlebury for

cross-validation. 

When we train the coarse-to-fine colorization network, the net-

work is optimized with RMSProp and a constant learning rate of

0.001. We train with a batch size of 1 using a 256 × 512 randomly

located crop from the input images. We train the network on the

dataset of Sintel, which contains 1064 training and 564 testing im-

ages. The random crop operation helps augment the training data

to 10,640 images by cropping 10 images randomly from each orig-

inal training image. The loss function we use is the mean squared

error between the prediction results and the ground-truth color

maps. 

During the training, first, we train the color similarity net-

work, and use the trained network to get coarse colorization re-

sults of all images in all datasets. Second, we train the coarse-to-

fine colorization network and use it to get the fine colorization

results. 
.2. Experiment I: Colorization 

Comparison algorithms: First, we compare with five state-of-

he-art reference-based colorization algorithms, i.e. the methods of

elsh et al. [7] , Ironi et al. [8] , Gupta et al. [9] , Jeon et al. [1] and

urusawa et al. [10] . In addition, we compare with two state-of-

he-art deep learning based automatic colorization algorithms, i.e.

he methods of Zhang et al. [3] and Iizuka et al. [4] , which could

utomatically colorize monochrome images without any reference

mages. The methods of Welsh et al. [7] , Ironi et al. [8] , and Gupta

t al. [9] do not assume short-baseline between the pair of images.

o, for each pixel in the monochrome image, the search region is

he whole reference image. For fair comparison, we re-implement

he methods and make the search range the same as our method,

hich is defined in Section 3 . The method of Furusawa et al. is

esigned for colorizing manga images while we aim at general im-

ges. When performing the method of Furusawa et al., the panel is

et as the whole reference image. 

Results: We show the quantitative results in Tables 2–5 . As

hown, our method largely outperforms the comparison methods.

nd some qualitative colorization results are shown in Figs. 9–11 .

s shown in Fig. 9 , Welsh’s et al. method does not have good per-

ormance, because their assumption of the correspondence from

ray intensity to color value of all pixels is not true for many im-

ges. So, some regions are wrongly colorized. Ironi’s et al. method

as problems for edges and small objects because many unoc-

luded pixels are wrongly marked as occluded pixels, and thus

he colorized pixels of unoccluded pixels are not enough for color
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Fig. 9. An example to compare the colorization results of Welsh’s et al. method [7] , Ironi’s et al. method [8] , Gupta’s et al. method [9] , and our colorization method. The 

region marked with the red box is shown in the second row. As shown, the comparison methods fail to recover correct colors in the marked region. This example is under 

Setup1 in Table 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. An example to compare the colorization results of Jeon et al.’s method [1] and our colorization method. The region marked with the red box is shown in the second 

row. As shown, Jeon’s et al. method fails to recover correct colors in the marked region. This example is under Setup2 in Table 1 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Examples to compare deep learning based automatic colorization algorithms, i.e. Zhang et al. [3] and Iizuka et al. [4] , manga image colorization algorithm, i.e. 

Furusawa et al. [10] , and our algorithm. As shown, due to not using the reference images as guidance, the recovered colors of Zhang et al. and Iizuka et al. are not correct 

in most regions. The method of Furusawa et al. fails in most regions too, because the assumptions of manga images are not true for general real-world images. The top and 

bottom examples are from Setup1 and Setup2 in Table 1 , respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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ropagation. Gupta’s et al. method does not perform well, espe-

ially for objects with complicated textures. It is because the fea-

ures of each superpixel are obtained by averaging the feature val-

es of all pixels in the superpixel, which will decrease the ac-

uracy of correspondence searching for our problem. Jeon’s et al.

ethod has comparable results with ours as shown in the quan-

itative results. But they do not deal with the occlusion regions

ell. As shown in Fig. 10 , there are occlusions in the red box re-

ion, and the results of their method are not correct. Furusawa’s

t al. result, as shown in Fig. 11 , is not good enough because the

ethod assumes that the images are manga images but in our

roblem the images are general images. The colorization qualities

f the state-of-the-art CNN-based automatic colorization methods

3,4] are worse than most of the reference-based mathods and

urs. As shown in Fig. 11 , their results have wrong colors in most

egions. It is because they are solving different problems. The input

mage in these methods is only single gray image. The reference

olor image, which could provide much useful color information

uring the colorization, is not utilized at all. 

We also show the processing time of different methods in

able 6 . From Table 6 , we can find that ours is much faster than the
ther colorization methods, only costing 0.37 s per image on aver-

ge. It is because most of our computation is performed on GPU,

.g. the ResNet feature extraction, the coarse-to-fine colorization,

nd only a small part of our method needs to be performed on

PU, i.e. searching for best-matching patches, and color propaga-

ion in low confidence regions. The GPU device is much faster than

PU, because the computation is paralleled, and thus our method

s efficient in computation. 

The performances of all the algorithms vary among different

atasets. It is because the images in different datasets have dif-

erent levels of occlusions. More occlusions usually lead to lower

erformance. 

In the step of color propagation in low confidence regions, we

lso perform an ablation study to compare the method of Levin

t al. [6] with Zhang et al. [5] , a recently proposed CNN based edit

ropagation method. The PSNR values (dB) of the methods of Levin

t al. and Zhang et al. over the five datasets are 38.09 and 36.94,

espectively. The method of Levin et al. has better performance be-

ause in our case the colorized regions are very dense and only a

mall number of parts in the image need color propagation. Our

esults accord with the claims in [5] that the CNN based method
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Table 6 

Processing time of different colorization methods. 

Time (s) Welsh et al. [7] Ironi et al. [8] Gupta et al. [9] Jeon et al. [1] Furusawa et al. [10] Zhang et al. [3] Iizuka et al. [4] Ours 

2048 ×1024 1.6 11.7 114.5 227.1 21.3 5.1 3.8 0.37 

Table 7 

Average PSNR values of different upsampling methods in the five datasets. 

PSNR (dB) Bicubic Dong et al. 

[19] 

Huang 

et al. [11] 

Ledig et al. 

[22] 

Ours 

Cityscapes 47.79 47.53 46.47 45.14 48.61 

KITTI 46.76 46.51 45.32 45.93 47.68 

MB2006 46.44 46.34 45.28 44.84 47.01 

MB2014 47.44 47.94 47.57 46.02 48.19 

Sintel 47.99 47.96 46.78 46.96 49.81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Processing time of different upsampling methods for the coarse-to-fine operation, 

with upsampling ratio 5 × 5. 

Time (s) Bicubic Dong et al. 

[19] 

Huang 

et al. [11] 

Ledig et al. 

[22] 

Ours 

5 × 5 0.05 23.4 145.1 62.7 0.09 

Table 9 

Quantitative results of our method without the coarse-to-fine (CTF) operation. 

Ours without 

CTF 

PSNR in 

Setup1 

PSNR in 

Setup2 

SSIM in 

Setup1 

SSIM in 

Setup2 

Cityscapes 39.37 36.27 0.9669 0.9271 

KITTI 35.97 35.65 0.9671 0.9376 

MB2006 37.07 33.80 0.9757 0.9597 

MB2014 35.18 32.22 0.9618 0.9223 

Sintel 37.49 35.11 0.9624 0.9348 
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is competing when the scribble is sparse but their advantage is not

obvious when the scribble is dense. 

We also use the dual-lens system of Huawei P9, consisting of

one monochrome camera and one color camera, to capture several

pairs of images. The results are reported in Fig. 1 , which have bet-

ter quality in the monochrome channel and correct colors. 

6.3. Experiment II: Coarse-to-fine colorization 

(1) First, we compare our upsampling method with differ-

ent upsampling methods in the literature. Our method uses the

ground-truth low resolution color image as the input, and the in-

put high resolution gray image as guidance. 

Comparison algorithms: The state-of-the-art upsampling meth-

ods are compared, including Bicubic, Huang’s et al. method [11] ,

Dong’s et al. method [19] , and Ledig’s et al. method [22] . 

Results: The quantitative and qualitative up-sampling results are

shown in Table 7 and Fig. 12 , respectively. As shown, our method

gets the highest performance for all datasets. And the qualitative

results in Fig. 12 show that we can do well in both textureless

regions and texture regions. The methods of Bicubic, Dong et al.,

Huang et al., and Ledig et al. have limited performances, because

no guidance of the original gray image is used in the upsam-

pling. The methods of Dong et al., Huang et al. and Ledig et al.

have even lower performances than Bicubic, because they are de-

signed to super resolve in both monochrome and color channels

and tend to add more texture and details into the result. In our

case, only the colors need upsampling but their results are usually

over-enhanced. The processing time of the comparison methods is

shown in Table 8 . As shown, our method is efficient but most of

the comparison algorithms are costly in computation. 
Fig. 12. An example to compare the upsampling results of Bicubic, Dong et al. [19] , Hua

(LR) color image in (a). The region marked with the red box is shown in the second row

CR) correctly in the marked region while our upsampling method has much better resu

referred to the web version of this article.) 
(2) Second, we also conduct an ablation study, where our

ethod without the coarse-to-fine operation is compared. 

Results: The quantitative results of our method without the

oarse-to-fine operation are shown in Table 9 . As shown, our

oarse-to-fine colorization method (whose results are presented in

he ‘Ours’ column of Tables 2–5 ) could have higher accuracy than

ur method without the coarse-to-fine operation. It is because,

ith the guidance of the high resolution input gray image, some

olorization errors at the coarse level could be corrected during the

oint upsampling process. From Table 8 , we can also find that the

oarse-to-fine operation is efficient in computation, only costing

.09 s per image on average. And performing the colorization with

he coarse-to-fine operation costs 0.37 seconds in total, as shown

n Table 6 . In comparison, if we directly perform the colorization

t the fine level, the computation time is 2.1 seconds per image on

verage. This shows the benefits of the coarse-to-fine operation in

omputation. The reason is that the colorization part (introduced

n Section 4.1 ) is more computational costly than the joint upsam-

ling part (introduced in Section 4.2 ). Colorization with the coarse-

o-fine operation could reduce the computation in the colorization

art, and thus reduce the computation cost in total. In short, the

oarse-to-fine operation has benefits for both colorization quality

nd computation efficiency. 

(3) Third, we conduct an ablation study where we try tradi-

ional convolutional layers instead of ResNet blocks in the color
ng et al. [11] , Ledig et al. [22] and our upsampling method for the low resolution 

. As shown, the comparison methods fail to upsample the color channels (Cb and 

lt. (For interpretation of the references to color in this figure legend, the reader is 



X. Dong and W. Li / Neurocomputing 352 (2019) 22–32 31 

Fig. 13. An example to compare the upsampling results of Levin’s et al. method [6] and our upsampling method for the low resolution (LR) color image in (a). The region 

marked with the red box is shown in the second row. As shown, Levin’s et al. method has wrong result in the marked region while our upsampling method has much better 

result. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. Examples of the outliers of our colorization results according to the symmetry colorization based evaluation method. The region marked with the red box is shown 

in the second row. As shown, our method fails to recover the color of the blue river in the marked region because it is completely occluded in the reference color image. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 10 

PSNR results (dB) of our method by varying the number of layers of ResNet blocks 

and using traditional convolutional layers (Conv) in the color similarity network. 

Number of layers Cityscapes KITTI MB2006 MB2014 Sintel 

ResNet 2 ∗2 40.62 36.41 38.36 36.92 39.00 

2 ∗4 40.81 36.59 38.56 37.11 39.22 

2 ∗8 40.86 36.63 38.60 37.14 39.26 

2 ∗16 40.86 36.62 38.59 37.13 39.26 

Conv 4 38.81 34.56 36.38 35.16 37.15 

8 38.54 34.23 36.06 34.80 36.79 

16 38.42 34.16 35.91 34.67 36.65 
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Table 11 

Results of colorization quality evaluation in all the five datasets. ‘Outlier II’ indi- 

cates the outlier images to the gray-color correspondence prior according to our 

evaluation method in Section 5.1 . ‘Inliers’ and ‘Outlier I’ indicate the inlier and out- 

lier colorization results respectively, according to the symmetry colorization based 

evaluation method in Section 5.2 . 

Inlier Outlier I Outlier II 

Percentage 87.27% 8.39% 4.34% 

Average PSNR(dB) 44.26 36.07 33.15 

6
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imilarity network, and we also conduct a series of experiments

here we vary the number of convolutional layers. The results are

hown in Table 10 . From this table, we can find that using ResNet

locks could largely increase the quality than using traditional con-

olutional layers, because residue blocks are easier to train. And

hese experiments indicate that it is not ‘the deeper the better’ in

his deep model for colorization. It may be caused by the difficulty

f training when the network is deeper. And using 8 residue blocks

s a proper choice for our colorization problem ( Fig. 13 ). 
.4. Experiment III: Colorization quality evaluation 

The quantitative results are shown in Table 11 . As shown, the

utliers to the gray-color correspondence prior only occupy 4.34%,

hich verifies that our prior is effective for most images. Ac-

ording to the symmetry colorization based evaluation method

the threshold we set is 42 dB), 87.27% of the colorization results

re judged to be inliers while the rest 8.39% are outliers, caused

ostly by complicated occlusions. The average PSNR of the inliers

an achieve 44.26 dB, which is a very high PSNR value and can
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indicate the high quality of the colorization. An example of the

outlier results are shown in Fig. 14 . 

7. Conclusions 

We introduce a deep learning based algorithm to shoot high-

quality color images using the dual-lens system with monochrome

and color cameras. Two problems, i.e. colorization in the dual-

lens system, and the colorization quality evaluation, are solved in

our paper. For colorization in the dual-lens system, we propose

the gray-color correspondence prior. Based on the prior, a deep

learning based and coarse-to-fine colorization method is proposed.

For colorization quality evaluation, a symmetry colorization based

evaluation method is proposed. Quantitative and qualitative exper-

imental results verify our observations, and demonstrate the effec-

tiveness of the proposed algorithm. The proposed algorithm is also

efficient in computation. 
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